• Title/Summary/Keyword: $T_2O_3$

Search Result 3,738, Processing Time 0.033 seconds

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Structural and optical properties of TiO2 thin films prepared by Sol-Gel dip coating method (졸-겔 침지코팅법으로 제조된 TiO2 박막의 구조적.광학적 특설)

  • 김동진;이학준;한성홍;김의정
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2002
  • The TiO$_2$ coating solutions were synthesized with different concentrations (T1-0.7N, T2-2.0N) of hydrochloric acid used as catalyst. and TiO$_2$ thin films were prepared by sol-gel dip coating. Their structural and optical properties were examined as a function of calcination temperature. XRD results showed that T1 thin films calcined at 400~80$0^{\circ}C$ had the anatase phase, while those calcined at 100$0^{\circ}C$ had the rutile phase. T2 thin films calcined at 40$0^{\circ}C$ and $600^{\circ}C$ had the anatase phase, with the rutile phase for calcination at 80$0^{\circ}C$. Crystallinity of T2 thin films was superior to that of T1 thin films. The crystallite size of TiO$_2$ thin films increased with increasing calcination temperature, and the crystallite size of anatase phase in T2 thin films was larger than that in T1 thin films, but the crystallite size of rutile phase in T2 thin films was smaller. The surface morphology of the films showed that the films were formed more densely in the rutile phase than in the anatase phase, this phenomenon appeared conspicuously in T2 thin films. The transmittance of the samples with thin films on quartz glass calcined at 100$0^{\circ}C$ was significantly reduced at wavelength range about 300-700 nm due to the increased absorption originating from the change of crystallite phase and composition of the films and the scattering effect originating from increasing crystallite size. The refractive index of TiO$_2$ thin films increased, and hence the film thickness as well as the porosity of TiO$_2$ thin films decreased with increasing calcination temperature. Furthermore, the refractive index of T2 thin films was higher than T1 thin films, and porosity of T2 films was lower.

Influence of Water Temperature on the Changes of Soil and Plant Nutrient of Paddy Rice (관개수온(灌漑水溫)의 차이(差異)가 토양(土壤) 및 수도체내(水稻體內) 양분변동(養分變動)에 미치는 영향(影響))

  • Kim, L.Y.;Min, K.B.;Jo, I.S.;Ju, N.S.;Um, K.T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.247-253
    • /
    • 1985
  • In order to investigate the effects of water temperature on chemical properties of soil and nutrient uptake of rice plant, four varieties of rice were cultivated in a field where water temperature range was $17.3-23.0^{\circ}C$ and plant samples were taken at three growing stages and were analyzed in detail. The results were summarized as follows: 1. Organic matter content and pH of surface soil were showed no differences while the contents of $P_2O_5$ and $SiO_2$ were increased and potassium was decreased as the water temperature increased. 2. The amounts of nutrient uptake were related to the water temperature and the total nutrient contents of rice plants at harvesting stage were in order of $SiO_2$ > $K_2O$ > T-N > $P_2O_5$ > MgO. The rate of $SiO_2$/N and $K_2O$/N of rice plants grown at water temperature $23.0^{\circ}C$ were over two times to those of the water temperature $17.3^{\circ}C$. 3. Nutrient contents of rice plants showed a increasing tendency as increasing the water temperature. However, nutrient contents such as T-N at whole period, $P_2O_5$ at heading and harvesting stage, and $K_2O$ at heading stage were higher at low water temperature than those of high water temperature. 4. Most of nitrogen was translocated and accumulated in grain, potassium in straw respectively. All nutrients translocated to grain more easily as the water temperature increased.

  • PDF

Pyroelectricity of BaTiO3-doped PMNT ferroelectric system for pyroelectric sensor

  • Yeon Jung Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.380-385
    • /
    • 2023
  • In this study, an MPB PMNT system containing 0.05 to 0.10 wt.% BaTiO3 was synthesized using a traditional chemical method and its pyroelectricity was investigated. Pyroelectricity, dielectricity, and ferroelectricity of the synthesized BaTiO3-PMNT system were analyzed by heat treatment at 1240~1280 ℃ for 4 hours to evaluate its applicability as a pyroelectric sensor. Unlike the simple ABO3 ferroelectric, the BaTiO3-doped PMNT system exhibited phase transition characteristics over a wide temperature range typical of complex perovskite structures. Although no dramatic change could be confirmed depending on the amount of BaTiO3 added, stable pyroelectricity was maintained near room temperature and over a wide temperature range. When the amount of BaTiO3 added increased from 0.05BaTiO3-PMNT to 0.10BaTiO3-PMNT, the electric field slightly increased from 5.00×103 kV/m to 6.75×103 kV/m, and the maximum value of remanent polarization slightly increased from 0.223 C/m2 to 0.234 C/m2. The pyroelectric coefficients of 0.05BaTiO3-PMNT and 0.10BaTiO3- PMNT at room temperature were measured to be ~0.0084 C/m2K and ~0.0043 C/m2K, respectively. The relaxor ferroelectric properties of the BaTiO3-PMNT system were confirmed by analyzing the plot of Kmax/K versus (T-Tmax)γ. The BaTiO3-doped MPB PMNT system showed a distinct pyroelectric performance index at room temperature, and the values were Fv ~ 0.0362 m2/C, Fd ~ 0.575×10-4 Pa-1/2.

Electrical Properties of Sol-gel Derived Ferroelectric Bi3.35Sm0.65Ti3O12 Thin Films by Rapid Thermal Annealing

  • Cho, Tae-Jin;Kang, Dong-Kyun;Kim, Byong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Ferroelectric Bi$_{3.35}$Sm$_{0.65}$Ti$_{3}$O$_{12}$(BSmT) thin films were synthesized using a sol-gel process. Bi(TMHD)$_{3}$, Sm$_{5}$(O$^{i}$Pr)13, Ti(O$^{i}$Pr)4 were used as the precursors, which were dissolved in 2­methoxyethanol. The BSmT thin films were deposited on Pt/TiO$_{x}$/SiO$_{2}$/Si substrates by spin­coating. The electrical properties of the thin films were enhanced using rapid thermal annealing process (RTA) at 600 $^{circ}$C for 1 min in O$_{2}$. Thereafter, the thin films were annealed from 600 to 720 $^{circ}$C in oxygen ambient for 1 hr, which was followed by post-annealed for 1 hr after depositing a Pt electrode to enhance the electrical properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystallinity and surface morphology of layered perovskite phase, respectively. The remanent polarization value of the BSmT thin films annealed at 720 $^{circ}$C after the RTA treatment was 35.31 $\mu$C/cmz at an applied voltage of 5 V.

Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals

  • Park, Sung Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The proton NMR line widths and spin-lattice relaxation rates, $T_1^{-1}$, of ferroelectric $LiH_3(SeO_3)_2$, $Li_2SO_4{\cdot}H_2O$, and $LiN_2H_5SO_4$ single crystals were measured as a function of temperature. The line width measurements reveal rigid lattice behavior of all the crystals at low temperatures and line narrowing due to molecular motion at higher temperatures. The temperature dependences of the proton $T_1^{-1}$ for these crystals exhibit maxima, which are attributed to the effects of molecular motion by the Bloembergen - Purcell - Pound theory. The activation energies for the molecular motions of $^1H$ in these crystals were obtained. From these analysis, $^1H$ in $LiH_3(SeO_3)_2$ undergoes molecular motion more easily than $^1H$ in $LiN_2H_5SO_4$ and $Li_2SO_4{\cdot}H_2O$ crystals.

Studies on structural, optical, thermal and low energy shielding for gamma rays for the ZSBP glasses

  • Abeer S. Altowyan;M.I. Sayyed;Ashok Kumar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3796-3803
    • /
    • 2024
  • By employing the melt-quenching technique, the ZnO-SrO-B2O3-PbO (ZSBP) glasses have been successfully fabricated. The derivative of Absorption Spectra Fitting (DASF) method was used to study the energy band gap (Eg) of the glasses which decreases from 3.57 eV to 3.39 eV. The structural properties have been studied using the Raman spectroscopy. The glass transition temperature (Tg) decreases with increase in concentration of the lead oxide. The current study examines the radiation shielding properties at 30.80-444 keV. The addition of PbO to the glasses resulted in a proportionate increase in the mass attenuation coefficient (MAC), suggesting a diminishing tendency in radiation transmission. At 30.80 keV, the MAC values are extremely high and range from 18.06 to 21.11 cm2/g. As density rises, the half value layer (HVL) decreases. In addition, the average HVL (${\overline{HVL}}$) decreases. The glass thickness required to reduce the radiation intensity to 90 %, 50 %, 25 %, and 10 % of its initial value is investigated at an energy of 35.80 keV. The T90 %, T50 %, T25 %, and T10 % values are 0.0020, 0.0132, 0.0264, and 0.0439 cm, respectively. The results suggest that a greater thickness of the radiation barrier is necessary to attain the necessary degree of attenuation.

The Effects of Deposition Temperature on the Growth Behavior of the $BNdT(Bi_{3.25}Nd_{0.75}Ti_{3}O_{12})$ Ferroelectric Thin Films ($BNdT(Bi_{3.25}Nd_{0.75}Ti_{3}O_{12})$ 강유전 박막 성장거동에 미치는 증착온도의 영향)

  • Kwon, Hyun-Yul;Nam, Sung-Pill;Kim, Jung-Hun;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.176-178
    • /
    • 2005
  • Ferroelectric $Bi_{3.25}Nd_{0.75}Ti_{3}O_{12}(BNdT)$ thin films were proposed for capacitor of FeRAM. The BNdT thin films were grown on Pt/Ti $SiO_2/P-Si(100)$ substrates by the RF magnetron sputtering deposition. The dielectric properties of the BNdT were investigated by varying deposition temperatures. Increasing deposition temperature, the (117) peak was increased. An increase of columnar and recrystalline structure of BNdT films with increasing deposition temperature was observed by the Field Emission Scanning Electron Microscopy(FE-SEM). The dielectric constant and dielectric loss of the BNdT thin films with deposition temperature of $600^{\circ}C$ were 319 and 0.05, respectively.

  • PDF

Development of Cheap Substrate for Fruiting of Pleurotus ostreatus using Paper Sludge (제지 부산물을 이용한 느타리버섯(Pleurotus ostreatus) 자실체 형성용 염가배지개발)

  • Jo, Woo-Sik;Yun, Yeong-Seok;Park, Sun-Do;Choi, Boo-Sull
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.197-201
    • /
    • 1995
  • For 2 years $(1993{\sim}1994)$, study on development of cheap medium for Pleurotus ostreatus revealed that paper sludge contain more CaO and similar T-C, T-N, $P_2O_5$, MgO but less $K_2O$ than any other medium material in chemical property. Mixed treatment (rice straw + paper sludge 10, 30, 50%, cotton waste + paper sludge 10, 30, 50%, cotton waste + rice hull 20 + paper sludge 10, 30, 50, 70%) is similar or fast a little in mycelial growth and is similar or fast $1{\sim}2$ day in period of primordia formation than cotton waste medium, and in the yield to each medium type also increased but excepted in rice hull 20% + paper sludge 70%, especially mixed medium at 7:3 ratio of cotton waste and paper sludge is best treatment because it is increased to 21%. In economical analysis, mixed medium at 7:3 ratio of cotton waste and paper sludge is increased to 50% compared to cotton waste medium in relative income.

  • PDF

Low Temperature Sintering Process of Sol-gel Derived Ferroelectric Sr0.9Bi2.1Ta1.8Nb0.2O9 Thin films (Sol-gel 법으로 제조된 강유전체 Sr0.9Bi2.1Ta1.8Nb0.2O9 박막의 저온결정화 공정)

  • 김영준;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.279-285
    • /
    • 2003
  • Ferroelectric S $r_{0.9}$B $i_{2.1}$T $a_{1.8}$N $b_{0.2}$ thin films with 200 nm thicknesses were deposited on Pt/Ti $O_2$/ $SiO_2$/Si Substrates by a sol-gel method. In these experiments, Sr(O $C_2$ $H_{5}$)$_2$, Bi(TMHD)$_3$, Ta(O $C_2$ $H_{5}$)$_{5}$ and Nb(O $C_2$ $H_{5}$)$_{5}$ were used as precursors, which were dissolved in 2-methoxyethanol. After UV-irradiation and RTA processes, the remanent polarization value (2 $P_{r}$) of SBTN thin films with annealed at $650^{\circ}C$ was 8.49 and 11.94 $\mu$C/$\textrm{cm}^2$ at 3 V and 5 V, respectively.