Browse > Article
http://dx.doi.org/10.6564/JKMRS.2016.20.1.001

Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals  

Park, Sung Soo (Samsung Advanced Institute of Technology (SAIT))
Publication Information
Journal of the Korean Magnetic Resonance Society / v.20, no.1, 2016 , pp. 1-6 More about this Journal
Abstract
The proton NMR line widths and spin-lattice relaxation rates, $T_1^{-1}$, of ferroelectric $LiH_3(SeO_3)_2$, $Li_2SO_4{\cdot}H_2O$, and $LiN_2H_5SO_4$ single crystals were measured as a function of temperature. The line width measurements reveal rigid lattice behavior of all the crystals at low temperatures and line narrowing due to molecular motion at higher temperatures. The temperature dependences of the proton $T_1^{-1}$ for these crystals exhibit maxima, which are attributed to the effects of molecular motion by the Bloembergen - Purcell - Pound theory. The activation energies for the molecular motions of $^1H$ in these crystals were obtained. From these analysis, $^1H$ in $LiH_3(SeO_3)_2$ undergoes molecular motion more easily than $^1H$ in $LiN_2H_5SO_4$ and $Li_2SO_4{\cdot}H_2O$ crystals.
Keywords
Ferroelectrics; Crystal growth; Nuclear magnetic resonance; Ferroelectricity; Crystal growth; Nuclear magnetic resonance and relaxation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Colomban and A. Novak, Anhydrous Materials, Oxonium Perchlorate, Acid Phosphates, Arsenates, Sulphates and Selenates in Proton Conductors, Cambridge University Press, Great Britain. 1992.
2 R. Kubo and K. Tomita, J. Phys. Soc. Japan. 9, 888 (1954)   DOI
3 G. Burns, Phys. Rev. 123, 64 (1961)   DOI
4 S. R. Miller, R. Blinic, M. Brenman, and J. S. Waugh, Phys. Rev. 126, 528 (1962)   DOI
5 A. R. Lim, J. K. Jung, and S.Y. Jeong, Solid State Commun. 118, 453 (2001)   DOI
6 J. L. Koenig, In Spectroscopy of Polymers, Elsevier Science Inc., New York, (1999)
7 N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73, 679 (1948)   DOI
8 A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford, (1989)
9 A. R. Lim and K.-S. Lee, J. Kor. Mag. Reson. Soc. 19, 29 (2015)   DOI
10 S. J. Lee and A.R. Lim, J. Kor. Mag. Reson. Soc. 19, 18 (2015)   DOI
11 A. A. Silvidi, J. Chem. Phys. 48, 1402 (1968)   DOI
12 C. P. Slicher, Principles of Magnetic Resonance, Springer-Verlag, New York (1989)
13 B. Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University Press, Cambridge, (1997)
14 R. Ikeda and C. A. McDowell, Molecular Physics 25, 1217 (1973)   DOI
15 J. A. Ripmeester and N. S. Dalal, Phys. Rev. B. 18, 3739 (1978)   DOI
16 D. F. Holcomb and B. Pedersen, J. Chem. Phys. 36, 3270 (1962)   DOI
17 J. D. Cuthbert and H. E. Petch, Can. J. Phys. 41, 1629 (1963)   DOI
18 W. D. MacClement, M. Pintar, and H. E. Petch, Can. J. Phys. 45, 3257 (1967)   DOI
19 R. R. Knispel and H. E. Petch, Can. J. Phys. 49, 870 (1971)   DOI