• Title/Summary/Keyword: $Si_3N_4$-TiN

Search Result 265, Processing Time 0.026 seconds

Effects of Deposition Parameters on TiN Film by Plasma Assisted Chemical Vapor Deposition(I) -Influence of Temperature on the TiN Deposition- (플라즈마 화학 증착법(PACVD)에 의한 TiN 증착시 증착변수가 미치는 영향(I) -증착온도를 중심으로-)

  • Shin, Y.S.;Ha, S.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1989
  • To investigate the influence of temperature on the TiN film, it was deposited on the STC-3 steel and Si-wafer from $TiCl_4/N_2/H_2$ gas mixture by using the radio frequency plasma assisted chemical vapor deposition. The deposition was performed at temperature of $400^{\circ}C-500^{\circ}C$. The results showed that crystalline TiN film was deposited over $480^{\circ}C$, and all specimens showed the crystalline TiN X-ray diffraction peaks after vacuum heat treatment for 3 hrs, at $1000^{\circ}C$, $10^{-5}torr$. While the film thickness was increased above $480^{\circ}C$, it was decreased under $480^{\circ}C$ as temperature increased. And the contents of titanium were increased and it of chlorine were decreased as temperature increased. Because temperature increase was attributed to the increase in the density of TiN film, surface hardness of TiN film was increased with temperature.

  • PDF

Low resistivity ohmic Pt/Si/Ti contacts to p-type 4H-SiC (Pt/Si/Ti P형 4H-SiC 오옴성 접합에서 낮은 접촉 저항에 관한 연구)

  • Yang, S.J.;Lee, J.H.;Nho, I.H.;Kim, C.G.;Cho, N.I.;Jung, K.H.;Kim, E.D.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.521-524
    • /
    • 2001
  • In this letter. we report on the investigation of Ti. Pt/Si/Ti Ohmic contacts to p-type 4H-SiC. The contacts were formed by a 2-step vacuum annealing at $500^{\circ}C$ for 1h. $950^{\circ}C$ for 10 min respectively. The contact resistances were measured using the transmission line model method. which resulted in specific contact resistivities in the $3.5{\times}10^{-3}$ and $6.2{\times}10^{-4}ohm/cm^{2}$, and the physical properties of the contacts were examined using x-ray diffraction. microscopy. AES(auger electron spectroscopy). AES analysis has shown that, at this anneal temperature, there was a intermixing of the Ti and Si. migration of into SiC. Overlayer of Pt had the effect of decreasing the specific contact resistivity and improving the surface morphology of the annealed contact.

  • PDF

Uncooled Pyroelectric Thin-film $(Ba,Sr)TiO_3$ Infrared Detector Thermally Isolated by Dielectric Membrane (유전체 멤브레인에 의해 열차단된 비냉각 초전형 박막 $(Ba,Sr)TiO_3$적외선 검지기)

  • Go, Seong-Yong;Jang, Cheol-Yeong;Kim, Dong-Jeon;Kim, Jin-Seop;Lee, Jae-Sin;Lee, Jeong-Hui;Han, Seok-Yong;Lee, Yong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • Uncooled pyroelectric thin-film (Ba,Sr)TiO$_3$ infrared detectors thermally isolated from Si-substrate by Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-membrane have been fabricated, and figures of merit for detectors were examined. The detector at $25^{\circ}C$ in air showed relatively high voltage responsivity of about 168.8 V/W and low specific detectivity of about 2.6$\times$10$^4$cm.Hz$^{1}$2//W at 1 Hz-chopping frequency because of very small signal-to-noise voltage ratio. It could be found that both thermal noise voltage and thermal time constant of the detector were very large by analyzing dependences of output waveforms on chopping frequency and temperature.

  • PDF

A study on the deposition characteristics of the hi thin films deposited ionized cluster beam deposition (ICBD법으로 증착된 Al 박막의 증착특성 연구)

  • 안성덕;김동원;천성순;강상원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.207-215
    • /
    • 1997
  • Aluminum (Al) thin films were deposited on the Si(100) and TiN(60 nm)/Si (100) substrate by the ionized cluster beam deposition (ICBD) method. The characteristics of thin films were examined by the $\alpha$-step, four-point-probe, Scanning Electron Spectroscopy (SEM), Auger Electron Spectroscopy (AES). The growth rate of the Al thin film increased and the resistivity decreased as the crucible temperature increased. At the crucible temperature $1800^{\circ}C$, the microstructure of Al thin film deposited was smooth and continuous the resistivity decreased as the acceleration voltage increased. Also, the minimum resistivity in Si(100) substrate and TiN(60 nm)/Si(100) substrate were 3.4 $\mu \Omega \textrm {cm}$, 3.6 $\mu \Omega \textrm {cm}$ at the acceleration voltage 4 kV and 2 kV respectively. From the AES spectrumt 14 wasn't detected any impurities In the Al thin film. Therefore the resistivity of Al thin film was affected by the microstructure of film.

  • PDF

Analysis and Design of half-mirror coating for sunglasses (썬글라스용 반미러(Half-Mirror) 코팅의 분석과 설계)

  • Park, Moon-Chan;Jung, Boo-Young;Hwangbo, Chang-Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • We collected the domestic and foreign half-mirror coating lens for sunglasses. Their reflectance is measured using Spectrophotometer in order to analysis their optical property and the result which is calculated using Macleod program was compared with measured reflectance. In addition, we designed the new half-mirror coating lens with gold color using TiN material and investigated the optical property of the new half-mirror coating lens. The results obtained from analysis of half-mirror coating lenses are as follow : Two-tone half-mirror coating with silver color is fabricated with [air|$SiO_2$(or $Al_2O_3$)|Cr|glass]. The role of $SiO_2$(or $Al_2O_3$) on Cr improve the hardness of the lens and the thickness of the $Al_2O_3$ with 10 nm is good to show the lens silver color. Incase of color half-mirror coating lens. Blue system is designed by [air|$SiO_2$(66.3)|$TiO_2$(129.0)|$SiO_2$(62.9)|$SiO_2$(26.0)|$TiO_2$(120.3)|$SiO_2$(9.1)|glass], gold system [air|$SiO_2$(60.6)|$TiO_2$(86.2)|$SiO_2$(13.5)|$TiO_2$(86.8)|$SiO_2$(214.38)|glass], green system[air|$SiO_2$(74.3)|$TiO_2$(75.8)|$SiO_2$(44.3)|$TiO_2$(11.6)|$SiO_2$(160.8)|$TiO_2$(12.9)|$SiO_2$(183.3)|$TiO_2$(143.8)|glass], silver system[air|$SiO_2$(21.2)|$TiO_2$(49.7)|$SiO_2$(149.3)|glass]. White half-mirror coating lens has [air|$SiO_2$(17 nm)|$TiO_2$(43 nm)(or $ZrO_2$)|$SiO_2$(87 nm)|polysiloxane($4.46{\mu}m$|glass or CR-19]. It has half-mirror coaling lens which has about 19% reflectance and about 80% transmittance in the range of visible light(400~700nm). we designed the new half-mirror coating lens with gold color, the (x, y) value of the CIE is almost similar to the CIE value of [air|$SiO_2$(170 nm)|TiN(15 nm)|glass].

  • PDF

Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives (보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering)

  • Lee, Sea-Hoon;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF

Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique (전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구)

  • Shin, Sung-Chul;Kim, Ji-Won;Kwon, Se-Hun;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

Hard TiN Coating by Magnetron-ICP P $I^3$D

  • Nikiforov, S.A.;Kim, G.H.;Rim, G.H.;Urm, K.W.;Lee, S.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.414-420
    • /
    • 2001
  • A 30-kV plasma immersion ion implantation setup (P $I^3$) has been equipped with a self-developed 6'-magnetron to perform hard coatings with enhanced adhesion by P $I^3$D(P $I^3$ assisted deposition) process. Using ICP source with immersed Ti antenna and reactive magnetron sputtering of Ti target in $N_2$/Ar ambient gas mixture, the TiN films were prepared on Si substrates at different pulse bias and ion-to-atom arrival ratio ( $J_{i}$ $J_{Me}$ ). Prior to TiN film formation the nitrogen implantation was performed followed by deposition of Ti buffer layer under A $r^{+}$ irradiation. Films grown at $J_{i}$ $J_{Me}$ =0.003 and $V_{pulse}$=-20kV showed columnar grain morphology and (200) preferred orientation while those prepared at $J_{i}$ $J_{Me}$ =0.08 and $V_{pulse}$=-5 kV had dense and eqiaxed structure with (111) and (220) main peaks. X-ray diffraction patterns revealed some amount of $Ti_{x}$ $N_{y}$ in the films. The maximum microhardness of $H_{v}$ =35 GN/ $M^2$ was at the pulse bias of -5 kV. The P $I^3$D technique was applied to enhance wear properties of commercial tools of HSS (SKH51) and WC-Co alloy (P30). The specimens were 25-kV PII nitrogen implanted to the dose 4.10$^{17}$ c $m^{-2}$ and then coated with 4-$\mu\textrm{m}$ TiN film on $Ti_{x}$ $N_{y}$ buffer layer. Wear resistance was compared by measuring weight loss under sliding test (6-mm $Al_2$ $O_3$ counter ball, 500-gf applied load). After 30000 cycles at 500 rpm the untreated P30 specimen lost 3.10$^{-4}$ g, and HSS specimens lost 9.10$^{-4}$ g after 40000 cycles while quite zero losses were demonstrated by TiN coated specimens.s.

  • PDF