Browse > Article
http://dx.doi.org/10.4191/KCERS.2009.46.5.467

Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives  

Lee, Sea-Hoon (Engineering Ceramic Research Group, KIMS)
Kim, Hai-Doo (Engineering Ceramic Research Group, KIMS)
Publication Information
Abstract
Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.
Keywords
Additives; Aluminum nitride; Silicon carbide; Densification;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. H. Lee, S. Guo, H. Tanaka, K. Kurashima, T. Nishimura, and Y. Kagawa, “Thermal Decomposition, Densification and Mechanical Properties of AlN-SiC $(-TiB_2)$ Systems with and Without B, B4C and C Additives,” J. Eur. Ceram. Soc., 28 [8] 1715-22 (2008)   DOI   ScienceOn
2 Phase Diagrams for Ceramists, Vol. 6, Ed. by R. S. Roth, J. R. Dennis and H. F. Mcmurdie, Fig. 6434, The American Ceramic Society, Westerville, OH, 1987
3 S. H. Lee, H. Tanaka, and T. Aoyagi, “Densification of AlN Using Boron and Carbon Additives,” J. Eur. Ceram. Soc., 29 [10] 2021-27 (2009)   DOI   ScienceOn
4 K. A. Weidenmann, G. Rixecker, and F. Aldinger, “Liquid Phase Sintered Silicon Carbide Ceramics Having Remarkably High Oxidation Resistance in Wet Air,” J. Eur. Ceram. Soc., 26 [13] 2453-57 (2006)   DOI   ScienceOn
5 D. Baxter, A. Bellosi, and F. Monteverde, “Oxidation and Burner Rig Corrosion of Liquid Phase Sintered SiC,” J. Eur. Ceram. Soc., 20 [3] 367-82 (2000)   DOI
6 S. Shimada and T. Aketo, “High-temperature Oxidation at $1500^{\circ}C\;and\;1600^{\circ}C $ of SiC/Graphite Coated with Sol-Gel- Derived $HfO_2$,” J. Am. Ceram. Soc., 88 [4] 845-49 (2005)   DOI   ScienceOn
7 V. A. Lavrenko, D. J. Baxter, A. D. Panasyuk, M. D.-Brut, E. Fenard, and V. N. Pavlikov, “High-temperature Corrosion of AlN-based Composite Ceramic in Air and in Combustion Products of Commertial Fuel. 2.,” Powder Metall. Metal Ceram., 43 [5-6] 295-303 (2004)   DOI
8 Phase Diagrams for Ceramists. Ed. by M. K. Reser, Figs. 770-72, The American Ceramic Society, Columbus, Ohio, 1964
9 W. Rafaniello, K. Cho, and A. V. Virkar, “Fabrication and Characterization of SiC-AlN Alloys,” J. Mater. Sci., 16 [12] 3479-88 (1981)   DOI
10 J. L. Huang and J. M. Jih, “Investigation of SiC-AlN System: Part 1. Microstructure and Solid Solution,” J. Mater. Res., 10 [3] 651-58 (1995)   DOI
11 Plenum Press Handbook of High-Temperature Materials, No. 1, Materials Index, Ed. by P. T. B. Shaffer, pp. 55-57, Plenum Press, New York, 1964
12 S. Aramaki and R. Roy, “The Mullite-corundum Boundary in the Systems $MgO-Al_2O_3-SiO_2\;and\;CaO-Al_2O_3-SiO_2$ ,” J. Am. Ceram. Soc., 42 [12] 644-45 (1959)   DOI
13 S. Kurita, Z. Q. Zeng, H. Takabe, and K. Morinaga, “Reaction and Phase Relations in the $AlN-B_2O_3$ System, ” Mater. Trans. JIM, 35 [4] 258-61 (1994)   DOI
14 C. Qiu and R. Matselaar, “Phase Relations in the Aluminum Carbide-aluminum Nitride-aluminum Oxide System,” J. Am. Ceram. Soc., 80 [8] 2013-20 (1997)   DOI   ScienceOn
15 C. M. Balkas, Z. Sitar, T. Zheleva, L. Bergman, R. Nemanich , and R. F. Davis, “Sublimation Growth and Characterization of Bulk Aluminum Nitride Single Crystals,” J. Crystal Growth, 179 [3-4] 363-70 (1997)   DOI   ScienceOn
16 Phase Diagrams for Ceramists, Vol. 10, Ed. by A. E. McHale, Fig. 8802, The American Ceramic Society, Westerville, OH, 1994
17 W. Rafaniello, M. R. Plichta, and A. V. Virkar, “Investigation of Phase Stability in the System SiC-AlN,” J. Am. Ceram. Soc., 66 [4] 272-76 (1983)   DOI
18 V. A. Lavrenko, D. J. Baxter, A. D. Panasyuk, and M. D.- Brut, “High-temperature Corrosion of AlN-based Composite Ceramics in Air and in Combustion Products of Commercial Fuel. 1., ” Powder Metall. Metal Ceram., 43 [3-4] 179-86 (2004)   DOI
19 T. Grande, H. Sommerset, E. Hagen, K. Wiil, and M. A. Einarsrud, “Effect of Weight Loss on Liquid-phase-sintered Silicon Carbide,” J. Am. Ceram. Soc., 80 [4] 1047-52 (1997)   DOI
20 K. Inoue and A. Yamaguchi, “Synthesis of $Al_4SiC_4$,” J. Am. Ceram. Soc., 86 [6] 1028-30 (2003)   DOI   ScienceOn
21 D. Salamon, Z. Shen, and P. Sajgalik, “Rapid Formation of $\alpha$ -sialon During Spark Plasma Sintering: Its Origin and Implications,” J. Eur. Ceram. Soc., 27 [6] 2541-47 (2007)   DOI   ScienceOn
22 CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide, pp. 4-6 - 4-84, Taylor & Francis Group, Boca Raton, 2005
23 S. Zhang and A. Yamaguchi, “Hydration Resistances and Reactions with CO of $Al_4O_4C\;and\;Al_2OC $Formed in Carbon- containing Refractories With Al,” J. Ceram. Soc. Jpn., 104 [5] 393-98 (1996)   DOI
24 J. Kimmel, N. Miriyala, J. Price, K. More, P. Tortorelli, H. Eaton, G. Linsey, and E. Sun, “Evaluation of CFCC Liners with EBC After Field Testing in a Gas Turbine,” J. Eur. Ceram. Soc., 22 [14-15] 2769-75 (2002)   DOI   ScienceOn
25 V. A. Lavrenko, M. Desmaison-Brut, A. D. Panasyuk, and J. Desmaison, “Features of Corrosion Resistance of AlNSiC Ceramics in Air Up to $1600^{\circ}C$,” J. Eur. Ceram. Soc., 18 [16] 2339-43 (1998)   DOI   ScienceOn