• Title/Summary/Keyword: $R_a$

Search Result 62,057, Processing Time 0.074 seconds

GENERATING NON-JUMPING NUMBERS OF HYPERGRAPHS

  • Liu, Shaoqiang;Peng, Yuejian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1027-1039
    • /
    • 2019
  • The concept of jump concerns the distribution of $Tur{\acute{a}}n$ densities. A number ${\alpha}\;{\in}\;[0,1)$ is a jump for r if there exists a constant c > 0 such that if the $Tur{\acute{a}}n$ density of a family $\mathfrak{F}$ of r-uniform graphs is greater than ${\alpha}$, then the $Tur{\acute{a}}n$ density of $\mathfrak{F}$ is at least ${\alpha}+c$. To determine whether a number is a jump or non-jump has been a challenging problem in extremal hypergraph theory. In this paper, we give a way to generate non-jumps for hypergraphs. We show that if ${\alpha}$, ${\beta}$ are non-jumps for $r_1$, $r_2{\geq}2$ respectively, then $\frac{{\alpha}{\beta}(r_1+r_2)!r_1^{r_1}r_2^{r_2}}{r_1!r_2!(r_1+R_2)^{r_1+r_2}}$ is a non-jump for $r_1+r_2$. We also apply the Lagrangian method to determine the $Tur{\acute{a}}n$ density of the extension of the (r - 3)-fold enlargement of a 3-uniform matching.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

Condensation Heat Transfer of R22, R407C, and R410A in Slit Fin-and-Tube Heat Exchanger

  • Jeon, Chang-Duk;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.188-198
    • /
    • 2003
  • R410A and R407C are considered to be alternative refrigerants of R22 for the air-conditioners. An experimental study is carried out to investigate the effect of the change of mass flow rate on the characteristics of heat transfer and pressure drop in three row slit finned-tube heat exchanger for R407C, R410A and R22. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. On the other hand, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases. The condensation heat transfer coefficient correlation proposed by Kedzierski shows the best agreement with the experimental data within $\pm$20%.

An Experimental Study on Condensation Characteristics of Slit Fin-tube Heat Exchanger Using Alternative Refrigerants, R407C and R410A (대체냉매 R407C 및 R410A를 이용한 슬릿휜-관 열교환기의 응축특성에 관한 연구)

  • 전창덕;장경근;강신형;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.706-716
    • /
    • 2002
  • R410A and R407C are considered to be alternative refrigerants to R22 for the air-conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerants R410A and R407C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. Between the R22 and R410A, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases.

Study on Evaporation Pressure Drop of R- l34a, R-407C, and R-410A in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 증발 압력강하에 관한 실험적 연구)

  • 박재홍;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.855-862
    • /
    • 2004
  • This study reports pressure drops during evaporation for R-l34a, R-407C (a mixture of 23 wt% R-32, 25 wt% R-125, and 52 wt% R-l34A) and R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) in the oblong shell and Plate heat exchanger. The effects of the mass fluxes, heat fluxes, refrigerant saturation temperatures and vapor quality of refrigerants on the measured data were explored in detail. The present data showed that pressure drops of all refrigerants increase with the vapor quality. At a higher mass flux, pressure drops are higher for the entire range of the vapor quality A rise in the heat flux doesn't show significant effects on the pressure drops. Finally, at a higher saturation temperature the pressure drops are found to be lower. The pressure drops for R-407C were approximately 20% lower than those of R-l34a. R-410A had 33% lower pressure drops than R-l34a. Correlation is also provided for the measured pressure drops in terms of the friction factor.

The Line n-sigraph of a Symmetric n-sigraph-V

  • Reddy, P. Siva Kota;Nagaraja, K.M.;Geetha, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • An n-tuple ($a_1,a_2,{\ldots},a_n$) is symmetric, if $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$. Let $H_n$ = {$(a_1,a_2,{\ldots},a_n)$ ; $a_k$ ${\in}$ {+,-}, $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$} be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n$ = (G,${\sigma}$) ($S_n$ = (G,${\mu}$)), where G = (V,E) is a graph called the underlying graph of $S_n$ and ${\sigma}$:E ${\rightarrow}H_n({\mu}:V{\rightarrow}H_n)$ is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{R}\mathcal{L}_r$(G). The vertices of $\mathcal{R}\mathcal{L}_r$(G) are the r-subsets of E(G) and two vertices P = ${p_1,p_2,{\ldots},p_r}$ and Q = ${q_1,q_2,{\ldots},q_r}$ are adjacent if there exists exactly one pair of edges, say $p_i$ and $q_j$, where $1{\leq}i$, $j{\leq}r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $S_n$ = (G,${\sigma}$) as a symmetric n-sigraph $\mathcal{R}\mathcal{L}_r$($S_n$) = ($\mathcal{R}\mathcal{L}_r(G)$, ${\sigma}$'), where $\mathcal{R}\mathcal{L}_r(G)$ is the underlying graph of $\mathcal{R}\mathcal{L}_r(S_n)$, where for any edge PQ in $\mathcal{R}\mathcal{L}_r(S_n)$, ${\sigma}^{\prime}(PQ)$=${\sigma}(P){\sigma}(Q)$. It is shown that for any symmetric n-sigraph $S_n$, its $\mathcal{R}\mathcal{L}_r(S_n)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs $S_n$ for which $\mathcal{R}\mathcal{L}_r(S_n)$~$\mathcal{L}_r(S_n)$ and $$\mathcal{R}\mathcal{L}_r(S_n){\sim_=}\mathcal{L}_r(S_n)$$, where ~ and $$\sim_=$$ denotes switching equivalence and isomorphism and $\mathcal{R}\mathcal{L}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of $S_n$ respectively.

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF

CLASSIFICATION OF CLIFFORD ALGEBRAS OF FREE QUADRATIC SPACES OVER FULL RINGS

  • Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.11-15
    • /
    • 1985
  • Manddelberg [9] has shown that a Clifford algebra of a free quadratic space over an arbitrary semi-local ring R in Brawer-Wall group BW(R) is determined by its rank, determinant, and Hasse invariant. In this paper, we prove a corresponding result when R is a full ring.Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is non-degenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$(V,R) induced by B is an isomorphism), and with a quadratic mapping .phi.: V.rarw.R such that B(x,y)=1/2(.phi.(x+y)-.phi.(x)-.phi.(y)) and .phi.(rx) = $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U9R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$,.., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2 we reserve the notation [a $a_{11}$, $a_{22}$] for the space. A commutative ring R having 2 a unit is called full [10] if for every triple $a_{1}$, $a_{2}$, $a_{3}$ of elements in R with ( $a_{1}$, $a_{2}$, $a_{3}$)=R, there is an element w in R such that $a_{1}$+ $a_{2}$w+ $a_{3}$ $w^{2}$=unit.TEX>=unit.t.t.t.

  • PDF

A NOTE ON SIMPLE SINGULAR GP-INJECTIVE MODULES

  • Nam, Sang Bok
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 1999
  • We investigate characterizations of rings whose simple singular right R-modules are GP-injective. It is proved that if R is a semiprime ring whose simple singular right R-modules are GP-injective, then the center $Z(R)$ of R is a von Neumann regular ring. We consider the condition ($^*$): R satisfies $l(a){\subseteq}r(a)$ for any $a{\in}R$. Also it is shown that if R satisfies ($^*$) and every simple singular right R-module is GP-injective, then R is a reduced weakly regular ring.

  • PDF

RINGS WITH REFLEXIVE IDEALS

  • Han, Juncheol;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.305-316
    • /
    • 2018
  • Let R be a ring with identity. A right ideal ideal I of a ring R is called ref lexive (resp. completely ref lexive) if $aRb{\subseteq}I$ implies that $bRa{\subseteq}I$ (resp. if $ab{\subseteq}I$ implies that $ba{\subseteq}I$) for any $a,\;b{\in}R$. R is called ref lexive (resp. completely ref lexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called the ref lexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K(M_n(R))=M_n(K(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x]{\subseteq}K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if R[x] is reflexive.