• Title/Summary/Keyword: $R_1$-space

Search Result 1,744, Processing Time 0.033 seconds

A Study on the Plan Type of National Rental Housing during the 1978-'80s - Focused on the R.C Structure depending on an access method to stairs - (1978-80년대 국민임대주택의 평면유형에 관한 연구 - 계단진입방식에 따른 R.C구조 평면을 중심으로 -)

  • Kim, Hong-Bae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • This study aims to identify variables (dependent and independent variables) by plane type and area, focusing on the R.C structure planes which were applied to the National Rental Housing Complexes during the 1970-80s; and to investigate differences in residential space compositions depending on the interrelationship between the variables. The results of this study can be summarized as follows: First, an independent variable which had the most influence on the residential space composition was found to be stairs. As dependent variables, bedroom, livingroom, and kitchen showed difference in spatial arrangements. Second, in the case of the front entry type, one-sided arrangements were the most common for the 3L+D.K composition, because livingroom was arranged near the stairs, Disadvantages were: (1) the spatial division of each room was not efficient; and (2) the use of room space was low due to long access to each room. Third, in the case of the rear entry type, no problem was found in arranging bedrooms on the front side. By arranging livingroom as a common space area, the distance of approachability to each room was found to be short and the use of space was excellent. However, disadvantages were: (1) stability was lacking; and (2) privacy was low. Fourth, depending on the location of the stairs, an interaction between bedrooms and the connectivity between livingroom and kitchen were found. Accordingly, there were differences in the size and arrangement of space by plane type.

Color Dispersion as an Indicator of Stellar Population Complexity for Galaxies in Clusters

  • Lee, Joon Hyeop;Pak, Mina;Lee, Hye-Ran;Oh, Sree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.34.1-34.1
    • /
    • 2018
  • We investigate the properties of bright galaxies with various morphological types in Abell 1139 and Abell 2589, using the pixel color-magnitude diagram (pCMD) analysis. The 32 bright member galaxies ($Mr{\leq}-21.3mag$) are deeply imaged in the g and r bands in our CFHT/MegaCam observations, as a part of the KASI-Yonsei Deep Imaging Survey of Clusters (KYDISC). We examine how the features of their pCMDs depend on galaxy morphology and infrared color. We find that the g - r color dispersion as a function of surface brightness (${\mu}r$) shows better performance in distinguishing galaxy morphology, than the mean g - r color does. The best set of parameters for galaxy classification appears to be a combination of the minimum color dispersion at ${\mu}r{\leq}21.2mag\;arcsec-2$ and the maximum color dispersion at $20.0{\leq}{\mu}r{\leq}21.0mag\;arcsec-2$: the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Moreover, the color dispersion of an elliptical galaxy appears to be correlated with its WISE infrared color ([4.6]-[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  • PDF

GLOBAL WEAK MORREY ESTIMATES FOR SOME ULTRAPARABOLIC OPERATORS OF KOLMOGOROV-FOKKER-PLANCK TYPE

  • Feng, Xiaojing;Niu, Pengcheng;Zhu, Maochun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1241-1257
    • /
    • 2014
  • We consider a class of hypoelliptic operators of the following type $$L=\sum_{i,j=1}^{p_0}a_{ij}{\partial}^2_{x_ix_j}+\sum_{i,j=1}^{N}b_{ij}x_i{\partial}_{x_j}-{\partial}_t$$, where ($a_{ij}$), ($b_{ij}$) are constant matrices and ($a_{ij}$) is symmetric positive definite on $\mathbb{R}^{p_0}$ ($p_0{\leqslant}N$). By establishing global Morrey estimates of singular integral on the homogenous space and the relation between Morrey space and weak Morrey space, we obtain the global weak Morrey estimates of the operator L on the whole space $\mathbb{R}^{N+1}$.

SURFACES OF REVOLUTION WITH MORE THAN ONE AXIS

  • Kim, Dong-Soo;Kim, Young-Ho
    • The Pure and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We study surfaces of revolution in the three dimensional Euclidean space $\mathbb{R}^3$ with two distinct axes of revolution. As a result, we prove that if a connected surface in the three dimensional Euclidean space $\mathbb{R}^3$ admits two distinct axes of revolution, then it is either a sphere or a plane.

CONTACT THREE CR-SUBMANIFOLDS OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

  • Kim, Hyang-Sook;Kim, Young-Mi;Kwon, Jung-Hwan;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.373-391
    • /
    • 2007
  • We study an (n+3)($n\;{\geq}\;7-dimensional$ real submanifold of a (4m+3)-unit sphere $S^{4m+3}$ with Sasakian 3-structure induced from the canonical quaternionic $K\"{a}hler$ structure of quaternionic (m+1)-number space $Q^{m+1}$, and especially determine contact three CR-submanifolds with (p-1) contact three CR-dimension under the equality conditions given in (4.1), where p = 4m - n denotes the codimension of the submanifold. Also we provide necessary conditions concerning sectional curvature in order that a compact contact three CR-submanifold of (p-1) contact three CR-dimension in $S^{4m+3}$ is the model space $S^{4n_1+3}(r_1){\times}S^{4n_2+3}(r_2)$ for some portion $(n_1,\;n_2)$ of (n-3)/4 and some $r_1,\;r_2$ with $r^{2}_{1}+r^{2}_{2}=1$.

Random Elements in $L^1(R)$ and Kernel Density Estimators

  • Lee, Sung-Ho;Lee, Robert -Taylor
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • Random elements in $L^1(R)$ and some properties of $L^1(R)$ space are investigated with application to kernel density estimators. A weak law of large numbers for compact uniformly integrable random elements is introduced for further application.

  • PDF

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

Color space's conversion for the color vision deficiency (적록 색각 이상자를 위한 색 공간 변환)

  • Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Color vision of color vision deficiency is possible using Color space's conversion of color image. Color vision of the RG-Color vision deficiency is possible by the case to maximize the G channel(+100), the case to minimize the G channel(-100), the case to maximize the R channel(+100), the case to convert the R channel to the yellow(Y) channel that is the value of $(-)b^*$ coordinate in CIE $L^*a^*b^*$ color space, the case to separate with only the B channel and the G channel and to appear by the light and darkness difference again, and the case to receive the image only by the light and darkness after separation of saturation and conversion of RGB channel.

  • PDF

ON FUNCTIONALLY CONVEX SETS AND FUNCTIONALLY CLOSED SETS IN REAL BANACH SPACES

  • Moazzen, Alireza;Gordji, Madjid Eshaghi;Raeisi, Hamidreza
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.49-57
    • /
    • 2018
  • We have introduced two new notions of convexity and closedness in functional analysis. Let X be a real normed space, then $C({\subseteq}X)$ is functionally convex (briefly, F-convex), if $T(C){\subseteq}{\mathbb{R}}$ is convex for all bounded linear transformations $T{\in}B$(X, R); and $K({\subseteq}X)$ is functionally closed (briefly, F-closed), if $T(K){\subseteq}{\mathbb{R}}$ is closed for all bounded linear transformations $T{\in}B$(X, R). By using these new notions, the Alaoglu-Bourbaki-Eberlein-${\check{S}}muljan$ theorem has been generalized. Moreover, we show that X is reflexive if and only if the closed unit ball of X is F-closed. James showed that for every closed convex subset C of a Banach space X, C is weakly compact if and only if every $f{\in}X^{\ast}$ attains its supremum over C at some point of C. Now, we show that if A is an F-convex subset of a Banach space X, then A is bounded and F-closed if and only if every element of $X^{\ast}$ attains its supremum over A at some point of A.