• Title/Summary/Keyword: $O_2/N_2$ separation

Search Result 209, Processing Time 0.027 seconds

Recovery of $SF_6$ from Gas Mixtures with Low Concentration of $SF_6$ (저농도 $SF_6$ 기체혼합물로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2011
  • This study describes the performance of PSF and PC membranes for separation and recovery of $SF_6$ from gas mixtures (10% $SF_6$/70% $N_2$/19% $O_2$/1% $CF_4$) containing low concentration of $SF_6$. The $SF_6$ concentration in retentate, recovery efficiency and selectivity of mixed gases were measured as a function of retentate flow rate and temperature. The concentration of $SF_6$ in the gas recovered from PSF and PC membrane respectively decreased with increase of retentate flow rate and increased with increase of temperature. The values of $SF_6$ concentration in retentate of PSF membrane were higher than those of PC membrane at constant experimental conditions. The maximum value of recovery efficiency of PSF and PC membranes are 95.9% and 67.8%, respectively, under 298.15 K and 150 cc/min of retentate flow rate. With the exception of $CF_4/SF_6$, the real selectivities of $N_2/SF_6$ and $O_2/SF_6$ at PSF membrane were higher than those of PC membrane.

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Gas Separation Properties of 6FDA-Based Polyimide Membranes with a Polar Group

  • Park, Sang-Hee;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Soo-Bok
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • 6FDA-based polyimides were prepared from the thermal imidization reaction of 6FDA with diamines of BAPAF, DAP, and DABA having a polar group of hydroxyL or carboxyl. Properties of the dense polyimide membranes were characterized and their gas permeation properties for H$_2$, $CO_2$, $O_2$, $N_2$, and CH$_4$ were investigated. Permeabilities, diffusion coefficients and diffusivity selectivities of polar group-containing polyimide membranes including 6FDA-BAPAF, 6FDA-DAP, and 6FDA-DABA polymer for the gases did not change largely. The separation properties of 6FDA-TrMPD polyimide membrane used as a reference polymer were compared with those of the polyimide membranes mentioned above. It was found that the polyimides of 6FDA-BAPAF, 6FDA-DAP, and 6FDA-DABA, which were soluble in alcohol or/and 2-methoxyethanol, could be applicable to the preparation of a dense composite membrane by dip-coating method.

VOCs Permeation Property of Composite Hollow Fiber Membranes (중공사 복합막을 이용한 다성분계 휘발성 유기 화합물 투과 특성)

  • Choi, Whee Moon;Cho, Soon Haing;Kim, Soon Tae;Lee, Chung Seop;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • To investigate the performance of VOC separation, composite hollow fiber membrane was prepared which composed of poly (ether imide) support prepared by phase separation method and poly (dimethylsiloxane) coating active layer. The performances of the membranes for the application of recovery process in terms of their morphology, gas permeance test for $N_2$ and $O_2$ gases. Durability against benzene, toluene and xylene was also investigated. And permeation test for multi-component VOCS through the membrane with different feed concentration and stage-cut were investigated. Permeance of PEI supported membrane and the membranes coated with PDMS decreased from 45,000 GPU to 63 GPU and 49,450 to 30 GPU for $N_2$ and $O_2$, respectively. Recovery efficiency and concentration of VOCs in permeate increased with decreasing stage-cut. VOCs concentration in permeate proportionally increased with increasing feed concentration but concentration ratio and recovery efficiency showed any noticeable changes with feed concentration change.

High Permeability, High Selectivity Carbon-Silica Membranes for Gas Separation (기체분리용 고투과선택성 탄소-실리카막)

  • 이영무;박호범
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.107-119
    • /
    • 2002
  • Carbon-silica ($C-SiO_2$) membranes can be easily prepared by the pyrolysis of two-phase copolymers containing an aromatic imide block and a siloxane block and remarkably high permselectivities of $He/N_2, O_2/N_2,$ and $CO_2/N_2$. The pyrolysis of the imide-siloxane block copolymers was carried out at different final temperatures, $600^{\circ}C, 800^{\circ}C,$ and $1000^{\circ}C$ under an inert atmosphere, and is the first reported case of the precursors being used for the preparation of carbon membrane. The polymeric precursors were synthesized in a wide range of siloxane content and different final morphology, and the pyrolozed membranes were tested with a high vacuum time-lag method at $25^{\circ}C$ and 76cmHg of feed pressure. In experiments with He, $CO_2, O_2 \;and \;N_2$, the membranes were found to have good $O_2/N_2$ selectivity up to 32.2 and $O_2$ permeability on the order of $10-8/cm^2(STP)cm/cm^2seccmHg.$.

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.

Preparation of a New Chiral Stationary Phase Based on (2S,3S)-O,O'-Bis-(10-undecenoyl)-N,N'-bis-(3,5-dinitrobenzoyl)-2,3-diamino-1,4-butandiol and Its Application

  • Hyun, Myung Ho;Boo, Chang-Jin;Choi, Hee-Jung;Kim, Yun-Kyoung;Kang, Bu-Sung;Ha, Hyun-Ju;Choi, Min-Ki;Tan, Guang-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1769-1774
    • /
    • 2006
  • A new liquid chromatographic chiral stationary phase based on (2S,3S)-O,O'-bis-(10-undecenoyl)-N,N'-bis-(3,5-dinitrobenzoyl)-2,3-diamino-1,4-butandiol was prepared starting from (2R,3R)-1,4-bis(benzyloxy)-2,3-butanediol. The new chiral stationary phase was applied to the resolution of racemic anilide derivatives of N-acetyl-a-amino acids, 1,1'-bi-2-naphthol and 3,3'-diaryl-1,1'-bi-2-naphthols. The CSP was also applied to the resolution of some chiral drugs including a diuretic, bendroflumethiazide, and non-steroidal anti-inflammatory agents such naproxen and alminoprofen. In every case, the chiral recognition efficiency of the new CSP was quite excellent.

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.

Enrichment of Lithium Isotope by an Ion Exchange Resin Containing Azacrown Ether (아자크라운 에터를 포함한 이온교환수지에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Chung, Yongsoon;Choi, Ki Young;Lee, Yong-Ill;Jeong, Young Kyu;Jang, Young Hun
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.403-407
    • /
    • 1997
  • Separation factor for $^6Li$ and $^7Li$ have been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane($N_3O_3$) as an anchor group. The lighter isotope, $^6Li$ is concentrated in the solution phase, while the heavior isotope, $^7Li$ is enriched in the resin phase. By Ccolumnl chromatography[0.9cm(I.D)${\times}$20cm(height)] using 2.0M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.009. i.e.$(^7Li/^6Li)_{resin}$/$(^7Li/^6Li)_{solution}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF