Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.3.183

Nanoporous graphene oxide membrane and its application in molecular sieving  

Fatemi, S. Mahmood (Computational and Simulation Group, Nuclear Science and Technology Research Institute)
Arabieh, Masoud (Computational and Simulation Group, Nuclear Science and Technology Research Institute)
Sepehrian, Hamid (Computational and Simulation Group, Nuclear Science and Technology Research Institute)
Publication Information
Carbon letters / v.16, no.3, 2015 , pp. 183-191 More about this Journal
Abstract
Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.
Keywords
molecular dynamic simulation; nanoporous graphene oxide membrane; separation; diffusion coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schrier J. Helium separation using porous graphene membranes. J Phys Chem Lett, 1, 2284 (2010). http://dx.doi.org/10.1021/jz100748x.   DOI
2 Du H, Li J, Zhang J, Su G, Li X, Zhao Y. Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C, 115, 23261 (2011). http://dx.doi.org/10.1021/jp206258u.   DOI
3 Jiang D, Cooper VR, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Lett, 9, 4019 (2009). http://dx.doi.org/10.1021/nl9021946.   DOI
4 Lei G, Liu C, Xie H, Song F. Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem Phys Lett, 599, 127 (2014). http://dx.doi.org/10.1016/j.cplett.2014.03.040.   DOI
5 Shiflett MB, Foley HC. Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science, 285, 1902 (1999). http://dx.doi.org/10.1126/science.285.5435.1902.   DOI
6 Cimbák Š, Povinec P. 85Kr atmospheric concentration in Bratislava from 1980 to 1983. Environ Int, 11, 65 (1985). http://dx.doi.org/10.1016/0160-4120(85)90103-5.   DOI
7 Yu M, Noble RD, Falconer JL. Zeolite membranes: microstructure characterization and permeation mechanisms. Acc Chem Res, 44, 1196 (2011). http://dx.doi.org/10.1021/ar200083e.   DOI
8 De Vos RM, Verweij H. High-Selectivity, High-flux silica membranes for gas separation. Science, 279, 1710 (1998). http://dx.doi.org/10.1126/science.279.5357.1710.   DOI
9 Schrier J, McClain J. Thermally-driven isotope separation across nanoporous graphene. Chem Phys Lett, 521, 118 (2012). http://dx.doi.org/10.1016/j.cplett.2011.11.069.   DOI
10 Li Y, Zhou Z, Shen P, Chen Z. Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chem Commun, 46, 3672 (2010). http://dx.doi.org/10.1039/B926313F.   DOI
11 Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A, 31, 1695 (1985). http://dx.doi.org/10.1103/PhysRevA.31.1695.   DOI
12 Lennard-Jones JE. Cohesion. Proc Phys Soc, 43, 461 (1931). http://dx.doi.org/10.1088/0959-5309/43/5/301.   DOI
13 Cervellera VR, Albertí M, Huarte-larrañaga F. A molecular dynamics simulation of air adsorption in single-walled carbon nanotube bundles. Int J Quantum Chem, 108, 1714 (2008). http://dx.doi.org/10.1002/qua.21590.   DOI
14 Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graphics, 14, 33 (1996). http://dx.doi.org/10.1016/0263-7855(96)00018-5.   DOI
15 Wang JC, Fichthorn KA. A method for molecular dynamics simulation of confined fluids. J Chem Phys, 112, 8252 (2000). http://dx.doi.org/10.1063/1.481430.   DOI
16 Arora G, Wagner NJ, Sandler SI. Adsorption and diffusion of molecular nitrogen in single wall carbon nanotubes. Langmuir, 20, 6268 (2004). http://dx.doi.org/10.1021/la036432f.   DOI
17 Suk ME, Aluru NR. Water transport through ultrathin graphene. J Phys Chem Lett, 1, 1590 (2010). http://dx.doi.org/10.1021/jz100240r.   DOI
18 Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys, 98, 10089 (1993). http://dx.doi.org/10.1063/1.464397.   DOI
19 Foroutan M, Taghavi Nasrabadi A. Adsorption and separation of binary mixtures of noble gases on single-walled carbon nanotube bundles. Physica E, 43, 851 (2011). http://dx.doi.org/10.1016/j.physe.2010.10.011.   DOI
20 Forester TR, Smith W. SHAKE, rattle, and roll: efficient constraint algorithms for linked rigid bodies. J Comput Chem, 19, 102 (1998). http://dx.doi.org/10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T.   DOI
21 Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir, 28, 235 (2012). http://dx.doi.org/10.1021/la203607w.   DOI
22 Mi B. Graphene oxide membranes for ionic and molecular sieving. Science, 343, 740 (2014). http://dx.doi.org/10.1126/science.1250247.   DOI
23 Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 343, 752 (2014). http://dx.doi.org/10.1126/science.1245711.   DOI
24 Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi JY, Park HB. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 342, 91 (2013). http://dx.doi.org/10.1126/science.1236098.   DOI
25 Guo YN, Lu X, Weng J, Leng Y. Density functional theory study of the interaction of arginine-glycine-aspartic acid with graphene, defective graphene, and graphene oxide. J Phys Chem C, 117, 5708 (2013). http://dx.doi.org/10.1021/jp310088e.   DOI
26 Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 117, 1 (1995). http://dx.doi.org/10.1006/ jcph.1995.1039.   DOI
27 Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn HJ, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 342, 95 (2013). http://dx.doi.org/10.1126/science.1236686.   DOI
28 Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335, 442 (2012). http://dx.doi.org/10.1126/science.1211694.   DOI
29 Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nano-tubes. Carbon, 39, 507 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00155-X.   DOI
30 Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 112, 6027 (2012). http://dx.doi.org/10.1021/cr300115g.   DOI
31 Zhu Y, James DK, Tour JM. New routes to graphene, graphene oxide and their related applications. Adv Mater, 24, 4924 (2012). http://dx.doi.org/10.1002/adma.201202321.   DOI
32 Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 5, 52 (2013). http://dx.doi.org/10.1039/c2nr32703a.   DOI
33 Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH. Biomedical applications of graphene and graphene oxide. Acc Chem Res, 46, 2211 (2013). http://dx.doi.org/10.1021/ar300159f.   DOI
34 Diggikar RS, Late DJ, Kale BB. Unusual morphologies of reduced graphene oxide and polyaniline nanofibers-reduced graphene oxide composites for high performance supercapacitor applications. RSC Adv, 4, 22551 (2014). http://dx.doi.org/10.1039/C3RA47834C.   DOI
35 Smith SC, Ahmed F, Gutierrez KM, Frigi Rodrigues D. A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: potential environmental applications. Chem Eng J, 240, 147 (2014). http://dx.doi.org/10.1016/j.cej.2013.11.030.   DOI
36 Dreyer DR, Jia HP, Bielawski CW. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed, 49, 6813 (2010). http://dx.doi.org/10.1002/anie.201002160.   DOI
37 Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Yildirim T. Graphene oxide framework materials: theoretical predictions and experimental results. Angew Chem Int Ed, 49, 8902 (2010). http://dx.doi.org/10.1002/anie.201003328.   DOI
38 Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli CA, Passerone D. Porous graphene as an atmospheric nanofilter. Small, 6, 2266 (2010). http://dx.doi.org/10.1002/smll.201001126.   DOI
39 Sun C, Boutilier MSH, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou NG. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir, 30, 675 (2014). http://dx.doi.org/10.1021/la403969g.   DOI
40 Freedman KJ, Ahn CW, Kim MJ. Detection of long and short DNA using nanopores with graphitic polyhedral edges. ACS Nano, 7, 5008 (2013). http://dx.doi.org/10.1021/nn4003665.   DOI
41 Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). http://dx.doi.org/10.1039/B917103G.   DOI
42 Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO. Graphene oxide liquid crystals. Angew Chem Int Ed, 50, 3043 (2011). http://dx.doi.org/10.1002/anie.201004692.   DOI
43 Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam JM. UV/ozoneoxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano, 5, 9799 (2011). http://dx.doi.org/10.1021/nn204156n.   DOI
44 Koenig SP, Wang L, Pellegrino J, Bunch JS. Selective molecular sieving through porous graphene. Nat Nanotechnol, 7, 728 (2012). http://dx.doi.org/10.1038/nnano.2012.162.   DOI
45 Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem, 2, 581 (2010). http://dx.doi.org/10.1038/nchem.686.   DOI
46 Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 318, 254 (2007). http://dx.doi.org/10.1126/science.1146744.   DOI
47 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI
48 Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi.org/10.1021/nl801457b.   DOI
49 Tao Y, Xue Q, Liu Z, Shan M, Ling C, Wu T, Li X. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl Mater Interfaces, 6, 8048 (2014). http://dx.doi.org/10.1021/am4058887.   DOI