Recovery of $SF_6$ from Gas Mixtures with Low Concentration of $SF_6$

저농도 $SF_6$ 기체혼합물로부터 $SF_6$의 회수

  • Lee, Hyun-Jung (Water Environment Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Kyung (Department of Industrial Chemistry, Sangmyung University) ;
  • Choi, Ho-Sang (Department of Chemical Engineering, Kyungil University) ;
  • Lee, Sang-Hyup (Water Environment Center, Korea Institute of Science and Technology)
  • 이현정 (한국과학기술연구원, 물환경센터) ;
  • 이현경 (상명대학교 공업화학과) ;
  • 최호상 (경일대학교 화학공학과) ;
  • 이상협 (한국과학기술연구원, 물환경센터)
  • Received : 2011.08.25
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

This study describes the performance of PSF and PC membranes for separation and recovery of $SF_6$ from gas mixtures (10% $SF_6$/70% $N_2$/19% $O_2$/1% $CF_4$) containing low concentration of $SF_6$. The $SF_6$ concentration in retentate, recovery efficiency and selectivity of mixed gases were measured as a function of retentate flow rate and temperature. The concentration of $SF_6$ in the gas recovered from PSF and PC membrane respectively decreased with increase of retentate flow rate and increased with increase of temperature. The values of $SF_6$ concentration in retentate of PSF membrane were higher than those of PC membrane at constant experimental conditions. The maximum value of recovery efficiency of PSF and PC membranes are 95.9% and 67.8%, respectively, under 298.15 K and 150 cc/min of retentate flow rate. With the exception of $CF_4/SF_6$, the real selectivities of $N_2/SF_6$ and $O_2/SF_6$ at PSF membrane were higher than those of PC membrane.

저농도의 $SF_6$를 포함하고 있는 기체 혼합물(10% $SF_6$/70% $N_2$/19% $O_2$/1% $CF_4$)로부터 $SF_6$를 분리 및 회수하기 위한 PSF막과 PC막의 성능에 대하여 연구하였다. 회수된 기체 내의 $SF_6$의 농도와 회수율 그리고 혼합기체($N_2/SF_6$, $O_2/SF_6$, $CF_4/SF_6$)의 선택도는 배출 유량과 온도의 함수로 측정하였다. PSF막과 PC막 모두 회수된 기체 내의 $SF_6$ 농도는 배출 유량이 증가하면서 감소하였으며 온도가 증가함에 따라 증가하였다. 동일한 실험조건에서는 PSF막에서 회수된 기체 내의 $SF_6$의 농도가 PC막에서보다 높게 나타났다. 최대회수율은 298.15 K과 배출유량 150cc/min에서 PSF막의 경우 95.9%이고 PC막의 경우 67.8%를 나타냈다. $CF_4/SF_6$를 제외한 $N_2/SF_6$$O_2/SF_6$의 실제 선택도는 PSF막이 PC막보다 더 높게 나타났다.

Keywords

References

  1. L. G. Christophojr, J. K. Olthofanfd, and R. J. Van Brunt, "Sulfur hexafluoride and the electric power industry", IEEE Electrical Insulation Magazine, 13(5), 20 (1997).
  2. M. Maiss and C. A. M. Brenninkmeijer, "Atmospheric $SF_6$: Trends, Sources, and Prospects", Environ. Sci. Technol., 32, 3077 (1998). https://doi.org/10.1021/es9802807
  3. M. Maiss, L. P. Steele, R. J. Francey, P. J. Fraser, R. L. Langenfelds, N. B. A. Trivett, and I. Levin, "Sulfur hexafluoride-A powerful new atmospheric tracer", Atmospheric Enviroment, 30(10/11), 1621 (1996).
  4. M. K. W. Ko, N. D. Sze, W.- C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, and C. P. Rinsland, "Atmospheric sulfur hexafluoride: sources, sinks and greenhouse warming", Journal of Geophysical Research, 98(D6), 10,499 (1993).
  5. Huang Li, GU Dinghong, Yang Longyu, Xia Lanyan, Zhang Renxi, and Hou Huiqi, "Photoreductive degradation of sulfur hexafluoride in the presence of styrene", J. Environ. Sci., 20, 183 (2008). https://doi.org/10.1016/S1001-0742(08)60029-7
  6. W.- T. Tsai, "The decomposition products of sulfur hexafluoride ($SF_6$): Reviews of environmental and health risk analysis", J. Fluor. Chem., 128(11), 1345 (2007). https://doi.org/10.1016/j.jfluchem.2007.06.008
  7. O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_6$ from $N_2$/$SF_6$ gas mixtures by using a polymer membrane", IEEE Electrical Insulation Magazine, 18(3), 32 (2002).
  8. S. A. Montzka and P. J. Fraser, "Scientific Assessement of Ozone Depletion: 2002, Controlled Substances and Other Source Gases", World Meteorlogical Organization (WMO), 1.22- 1.61 (2003).
  9. U. S. Climate Change Technology, "4.3.3 Semiconductors and Magnesium: Recovery and Recycle", U. S. Climate Change Technology Program - Technology Options for the Near and Long Term, 4.3- 4.6 (2005).
  10. S. P. Cashion, N. J. Ricketts, and P. C. Hayes, "Characterisation of protective surface films formed on molten magnesium protected by air/$SF_6$ atmospheres", J. Light Metals, 2(1), 37 (2002). https://doi.org/10.1016/S1471-5317(02)00011-1
  11. S. H. Lee, N.- K. Park, S. H. Yoon, W. C. Chang, and T. J. Lee, "Catalytic Decomposition of SF6 by Hydrolysis and Oxidation over $\gamma$- $Al_2O_3$", Clean Technol., 15(4), 273. (2009).
  12. Y.- F. Wang, M. Shih, C.- H. Tsai, and P.- J. Tsai, "Total toxicity equivalents emissions of $SF_6$, $CHF_3$ , and $CCl_2F_2 $ decomposed in a RF plasma environment", Chemosphere, 62(10), 1681 (2006). https://doi.org/10.1016/j.chemosphere.2005.06.036
  13. D. R. James, I. Sauers, G. D. Griffin, R. J. Van Brunt, J. K. Olthoff, K. L. Stricklett, F. Y. Chu, J. R. Robins, and H. D. Morrison, "Investigation of $S_2F_{l0}$Production and Mitigation in Compressed $SF_6$- Insulated Power Systems", IEEE Electrical Insulation Magazine, 9(3), 29 (1993).
  14. G. D. Griffin, I. Sauers, L. G. Christophorou, C. E. Easterly, and P. J. Walsh, "On the toxicity of sparked $SF_6$", IEEE Transactions on Electrical Insulation, E1- 18(5), 551 (1983).
  15. International Standard, "Guidelines for the checking and treatment of sulfer hexafluoride ($SF_6$) taken from electrical equipment and specification for its re- use", International Electrotechnical Commission, IEC 60480 Second edition (2004).
  16. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, "Climate Change 2007: The Physical Science Basis", IPCC Fourth Assessment Report (AR4), http://www.ipcc.ch/pdf/assessment- report/ar4/ wg1/ar4- wg1- chapter2.pdf (2007).
  17. Y. Jo, "Development of measurement method & inventory methodology for $SF_6$in electrical equipment", Ministry of Knowledge Economy, 18. (2008).
  18. S. Lee, "Development of $SF_6$ Gas Recy cling System for Global Warming Reduction", Ministry of Knowledge Economy, (2010).
  19. R. Kurte, H. M. Heise, and D. Klockow, "Quantitative infrared spectroscopic analysis of $SF_6$ decomposition products obtained by electrical partial discharges and sparks using PLS- calibrations", J. Mole. Struc., 565- 566, 505- 513 (2001).
  20. F. Pepi, A. Ricci, M. D. Stefano, and M. Rosi, "Sulfer hexafluoride corona discharge decomposition: gas- phase ion chemisty of $SOF_\chi^^+$($\chi$=1- 3) ions", Chemical Physics Letters, 381(1- 2), 168 (2003). https://doi.org/10.1016/j.cplett.2003.09.123
  21. D.- H. Kim, Y.- M. An, H.- D. Jo, J.- S. Park, and H.- K. Lee, "Studies on the $N_2/SF_6 $Permeation Behaviors Using the Polyethersulfone Hollow Fiber Membranes", Membrane Journal, 19(3), 244 (2009).
  22. K. Shiojiri, Y. Yanagisawa, A. Yamasaki, and F. Kiyono, "Separation of F- gases (HFC- 134a and $SF_6$) from gaseous mixtures with nitrogen by surface diffusion through a porous Vycor glass membrane", J. Membr. Sci., 282, 442 (2006). https://doi.org/10.1016/j.memsci.2006.06.003
  23. F. Jareman and J. Hedlund, "Permeation of H2, N2, He and SF6 in real MFI membranes", Microporous and Mesoporous Materials, 83, 326 (2005). https://doi.org/10.1016/j.micromeso.2005.04.027
  24. H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and Permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through Polymeric Hollow Fiber Membranes", Membrane Journal, 20(3), 249 (2010).
  25. H. Lee, M. Lee, H. Lee, and S. Lee, "Separation and Recovery of $SF_6$ Gas from $N_2/SF_6 $Gas Mixtures by using a Polymer Hollow Fiber Membranes", Korean Soc. Environ. Eng., 33(1), 47 (2011).
  26. H. Lee, M. Lee, H. Lee, and S. Lee, "Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes", Membrane Journal, 21(1), 22 (2011).
  27. International Standard, "Specification of technical grade sulfer hexafluoride(SF6) for use in electrical equipment", International Electrotechnical Commission, IEC 60376 Second edition (2005).
  28. J. H. Kim, J. W. Rhim, and S. B. Lee, "Research trend of membrane technology for separation of carbon dioxide from flue gas", Membrane Journal, 12(3), 121 (2002).
  29. S. H. Han, H. B. Park, and Y. M. Lee, "Recent technology trends of polymeric gas separation membranes", Polym. Sci. and Technol., 19(4), 284 (2008).
  30. J.- S. Cho, J.- S. Kim, and K.- R. Lee, "Sorption and permeation characteristics of oxygen and nitrogen for polysulfone hollow- fiber membrane", Membrane Journal, 9(1), 25 (1999).
  31. R. T. Chern, W. J. Koros, E. S. Sanders and R. Yui, "'Second component' effects in sorption and permeation of gases in glassy polymers", J. Membr. Sci., 15(2), 157 (1983). https://doi.org/10.1016/S0376-7388(00)80395-6