Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2008.08.31

Abstract

A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.

Keywords

References

  1. S. A. Stern, J. Membr. Sci., 94, 1 (1994) https://doi.org/10.1016/0376-7388(94)00141-3
  2. W. J. Koros and G. K. Fleming, J. Membr. Sci., 83, 1 (1993) https://doi.org/10.1016/0376-7388(93)80013-N
  3. H. Kawakami, M. Mikawa, and S. Nagaoka, J. Membr. Sci., 137, 241 (1997) https://doi.org/10.1016/S0376-7388(97)00198-1
  4. W. J. Koros and R. Mahajan, J. Membr. Sci., 175, 181 (2000) https://doi.org/10.1016/S0376-7388(00)00418-X
  5. J. W. Rhim, S. H. Hwang, D. S. Kim, H. B. Park, C. H. Lee, Y. M. Lee, G. Y. Moon, and S. Y. Nam, Macromol. Res., 13, 135 (2005) https://doi.org/10.1007/BF03219027
  6. S. W. Kang, J. H. Kim, and K. Char, Y. S. Kang, Macromol. Res., 13, 162 (2005) https://doi.org/10.1007/BF03219032
  7. H. B. Park, I. Y. Suh, and Y. M. Lee, Chem. Mater., 14, 3034 (2002) https://doi.org/10.1021/cm020216v
  8. H. B. Park and Y. M. Lee, Adv. Mater., 17, 477 (2005) https://doi.org/10.1002/adma.200400944
  9. C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and B. D. Freeman, Macromolecules, 39, 755 (2006) https://doi.org/10.1021/ma052226y
  10. N. Song, L. Men, P. Gao, Y. Bai, A. M. R. Beaudin, G. Yu, and Z. Y. Wang, Chem. Mater., 16, 3708 (2004) https://doi.org/10.1021/cm0493851
  11. A. Qin, Z. Yang, F. Bai, and C. Ye, J. Polym. Sci. Polym. Chem., 41, 2846 (2003) https://doi.org/10.1002/pola.10871
  12. J. Y. Lee, J. H. Kim, and B. K. Rhee, Macromol. Res., 15, 234 (2007) https://doi.org/10.1007/BF03218781
  13. S. H. Park, K. J. Kim, W. W. So, S. J. Moon, and S. B. Lee, Macromol. Res., 11, 157 (2003) https://doi.org/10.1007/BF03218346
  14. M. D. Guiver, G. P. Robertson, Y. Dai, F. Bilodeau, Y. S. Kang, K. J. Lee, J. Y. Jho, and J. O. Won, J. Polym. Sci. Polym. Chem., 40, 4193 (2002) https://doi.org/10.1002/pola.10516
  15. G. C. Eastmond, M. Gibas, W. F. Pacynko, and J. Paprotny, J. Membr. Sci., 207, 29 (2002) https://doi.org/10.1016/S0376-7388(01)00750-5
  16. S. B. Mhaske, R. V. Bhingarkar, M. B. Sabne, R. Mercier, and S. P. Vernekar, J. Appl. Polym. Sci., 77, 627 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<627::AID-APP18>3.0.CO;2-W
  17. W. N. Leng, Y. M. Zhou, Q. H. Xu, and J. Z. Liu, Polymer, 42, 7749 (2001) https://doi.org/10.1016/S0032-3861(01)00282-8
  18. K. J. Kim, S. H, Park, W. W. So, D. J. Ahn, and S. J. Moon, J. Membr. Sci., 211, 41 (2003) https://doi.org/10.1016/S0376-7388(02)00316-2
  19. D. Likhatchev, C. Gutierrez-Wing, I. Kardash, and R. Vera-Graziano, J. Appl. Polym. Sci., 59, 725 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<725::AID-APP18>3.0.CO;2-O
  20. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, Science, 318, 254 (2007) https://doi.org/10.1126/science.1146744
  21. G. L. Tullos, J. M. Powers, S. J. Jeskey, and L. J. Mathias, Macromolecules, 32, 3598 (1999) https://doi.org/10.1021/ma981579c
  22. K. Tanaka, H. Kita, M. Okano, and K. Okamoto, Polymer, 33, 585 (1992) https://doi.org/10.1016/0032-3861(92)90736-G
  23. L. H. Sperling, Introduction to Physical Polymer Science, Second Ed., Wiley, New York, 1992