• Title/Summary/Keyword: $O_2/BCl_3/Ar$

Search Result 66, Processing Time 0.034 seconds

Model-Based Analysis of the $ZrO_2$ Etching Mechanism in Inductively Coupled $BCl_3$/Ar and $BCl_3/CHF_3$/Ar Plasmas

  • Kim, Man-Su;Min, Nam-Ki;Yun, Sun-Jin;Lee, Hyun-Woo;Efremov, Alexander M.;Kwon, Kwang-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.383-393
    • /
    • 2008
  • The etching mechanism of $ZrO_2$ thin films and etch selectivity over some materials in both $BCl_3$/Ar and $BCl_3/CHF_3$/Ar plasmas are investigated using a combination of experimental and modeling methods. To obtain the data on plasma composition and fluxes of active species, global (0-dimensional) plasma models are developed with Langmuir probe diagnostics data. In $BCl_3$/Ar plasma, changes in gas mixing ratio result in non-linear changes of both densities and fluxes for Cl, $BCl_2$, and ${BCl_2}^+$. In this work, it is shown that the non-monotonic behavior of the $ZrO_2$ etch rate as a function of the $BCl_3$/Ar mixing ratio could be related to the ion-assisted etch mechanism and the ion-flux-limited etch regime. The addition of up to 33% $CHF_3$ to the $BCl_3$-rich $BCl_3$Ar plasma does not influence the $ZrO_2$ etch rate, but it non-monotonically changes the etch rates of both Si and $SiO_2$. The last effect can probably be associated with the corresponding behavior of the F atom density.

  • PDF

A Study on the Etching Mechanism of $(Ba, Sr)TiO_3$ thin Film by High Density $BCl_3/Cl_2/Ar$ Plasma ($BCl_3/Cl_2/Ar$ 고밀도 플라즈마에 의한 $(Ba, Sr)TiO_3$ 박막의 식각 메커니즘 연구)

  • Kim, Seung-Bum;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.18-24
    • /
    • 2000
  • (Ba,Sr)$TiO_3$ thin films have attracted great interest as new dielectric materials of capacitors for ultra-large-scale integrated dynamic random access memories (ULSI-DRAMs) such as 1 Gbit or 4 Gbit. In this study, inductively coupled $BCl_3/Cl_2/Ar$ plasmas was used to etch (Ba,Sr)$TiO_3$ thin films. RF power/dc bias voltage=600 W/-250 V and chamber pressure was 10 mTorr. The $Cl_2/(Cl_2+Ar)$ was fixed at 0.2 the (Ba,Sr)$TiO_3$ thin films were etched adding $BCl_3$. The highest (Ba,Sr)$TiO_3$ etch rate is $480{\AA}/min$ at 10 % $BCl_3$ to $Cl_2/Ar$. The change of Cl, B radical density measured by optical emission spectroscopy(OES) as a function of $BCl_3$ percentage in $Cl_2/Ar$. The highest Cl radical density was shown at the addition of 10% $BCl_3$ to $Cl_2/Ar$. To study on the surface reaction of (Ba, Sr)$TiO_3$ thin films was investigated by XPS analysis. Ion bombardment etching is necessary to break Ba-O bond and to remove $BaCl_2$. There is a little chemical reaction between Sr and Cl, but Sr is removed by physical sputtering. There is a chemical reaction between Ti and Cl, and $TiCl_4$ is removed with ease. The cross-sectional of (Ba,Sr)$TiO_3$ thin film was investigated by scanning electron microscopy (SEM), the etch slope is about 65~70$^{\circ}$.

  • PDF

The Etching of $HfO_2$ Thin Film as the ion Energy Distributions in the $BCl_3/Ar$ Inductively Coupled Plasma System ($BCl_3/Ar$ 유도 결합 플라즈마 시스템에서 이온 에너지 분포에 따른 $HfO_2$ 박막의 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.349-354
    • /
    • 2007
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma(ICP) system. The ion energy distribution functions in an ICP system was analyzed by quadrupole mass spectrometer(QMS) with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ thin film is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20 % and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions(IEDS) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a $O_2$ addition of 2 sccm into the $BCl_3/(BCl_3+Ar)$ of 20 % plasma.

Study of the Etched ZnO Thin Film Surface in the $BCl_{3}/Ar/Cl_{2}$ Plasma ($Cl_{2}/BCl_{3}$/Ar 플라즈마에 의해 식각된 ZnO 박막 표면의 연구)

  • U, Jong-Chang;Ha, Tae-Gyeong;Wi, Jae-Hyeong;Ju, Yeong-Hui;Eom, Du-Seung;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.264-265
    • /
    • 2009
  • 본 연구에서 유도결합 플라즈마 식각 장치외 $BCl_3/Ar/Cl_2$ 가스 혼합비를 이용하여 ZnO 박막을 식각 하였을 때, 식각 된 ZnO 박막의 표면 반응에 관하여 관찰하였다. ZnO 박막의 식각 실험 조건은 RF 전력 700 W, 직류바이어스 전압 - 150 V, 공정 압력 15 mTorr로 고정하였고, $Cl_2/(Cl_2+BCl_3+Ar)$ 가스 혼합비를 변경하면서 식각 실험을 수행하였다. $Cl_2$ 가스가 3 sccm 일 때, ZnO 박막의 식각속도는 53 nm/min으로 가장 높았으며, 이때 ZnO 박막에 대한 $SiO_2$의 선택비는 0.89 이었다. 식각된 ZnO 박막의 표면은 XRD (X-ray diffraction)와 AFM(atomic force microscopy)를 이용하여 결정상의 변화와 표면의 거칠기를 분석하였다. AFM 분석 결과에서 Ar, $BCl_3$$Cl_2$ 플라즈마를 이용하여 식각된 시료의 표면 거칠기 근 값이 식각전의 시료나 $BCl_3/Ar/Cl_2$ 플라즈마로 식각된 시료보다 큰 것을 확인하였다. 이는 식각된 시료에서의 Zn 양의 감소나 비휘발성 식각 잔류물에 의한 영향으로 판단된다. SIMS(secondary ion mass spectrometery) 분석을 통해 검증 하였다.

  • PDF

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma (Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구)

  • Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.747-751
    • /
    • 2010
  • In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Etching characteristics of $Y_2O_3$ Thin films using inductively coupled Plasma of $BCl_3$/Ar Gas Mixtures (BCl3/Ar 혼합가스를 이용한 $Y_2O_3$ 박막의 유도결합 플라즈마 식각)

  • Kim, Moon-Keun;Yang, Dae-Wang;Kim, Young-Ho;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.67-67
    • /
    • 2009
  • 본 연구는 강유전체 박막의 buffer 층으로 사용되는 Yttrium oxide($Y_2O_3$) 박막에 대한 $BCl_3$/Ar 혼합가스 식각 특성에 대해 연구하였다. 식각 메카니즘을 해석하기 위해 QMS(Quadrupole Mass Spectrometer), OES(Optical Emission Spectroscopy)를 사용하여 플라즈마 특성을 추출하였다. 공정 조건(source power, bias power, pressure, total gas flow)을 동일하게 유지하고 $BCl_3$/Ar 혼합가스 비율을 변화시키며 실험을 진행 하였다. 혼합가스의 비율이 $BCl_3$(80%)/Ar(20%)일때 가장 높은 식각 속도을 나타냈고, 이후 점차 감소하였다. 이때의 식각 속도는 8.8 nm/min 였다. 이에 $Y_2O_3$는 이온 보조 화학식각 특성을 가짐을 확인하였다.

  • PDF

The Etching Properties of Indium Tin Oxide Thin Films in O2/BCl3/Ar Gas Mixture Using Inductively Coupled Plasma (유도결합플라즈마를 이용한 O2/BCl3/Ar가스에 따른 Indium Tin Oxide 박막의 식각 특성 연구)

  • Wi, Jae-Hyung;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.752-758
    • /
    • 2010
  • The etching characteristics of indium tin oxide (ITO) thin films in an $O_2/BCl_3/Ar$ plasma were investigated. The etch rate of ITO thin films increased with increasing $O_2$ content from 0 to 2 sccm in $BCl_3$/Ar plasma, whereas that of ITO decreased with increasing $O_2$ content from 2 sccm to 6 sccm in $BCl_3$/Ar plasma. The maximum etch rate of 65.9 nm/m in for the ITO thin films was obtained at 2 sccm $O_2$ addition. The etch conditions were the RF power of 500 W, the bias power of 200 W, the process pressure of 15 mTorr, and the substrate temperature of $40^{\circ}C$. The analysis of x-ray photo electron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of ITO thin films and etch species.

The etching properties of $Al_2O_3$ thin films in $N_2/Cl_2/BCl_3$ and Ar/$Cl_2/BCl_3$ gas chemistry (유도결합 플라즈마를 이용한 $Al_2O_3$ 식각 특성)

  • Koo, Seong-Mo;Kim, Dong-Pyo;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.72-74
    • /
    • 2004
  • In this study, we used a inductively coupled plasma (ICP) source for etching $Al_2O_3$ thin films because of its high plasma density, low process pressure and easy control bias power. $Al_2O_3$ thin films were etched using $Cl_2/BCl_3$, $N_2/Cl_2/BCl_3$, and Ar/$Cl_2/BCl_3$ plasma. The experiments were carried out measuring the etch rates and the selectivities of $Al_2O_3$ to $SiO_2$ as a function of gas mixing ratio, rf power, and chamber pressure. When $Cl_2$ 50% was added to $Cl_2/BCl_3$ plasma, the etch rate of the $Al_2O_3$ films was 118 nm/min. We also investigated the effect of gas addition. In case of $N_2$ addition, the etch rate of the $Al_2O_3$ films decreased while $N_2$ was added into $Cl_2/BCl_3$ plasma. However, the etch rate increased slightly as Ar added into $Cl_2/BCl_3$ plasma, and then further increase of Ar decreased the etch rate. The maximum etch rate was 130 nm/min at Ar 20% in $Cl_2/BCl_3$ plasma, and the highest etch selectivity was 0.81 in $N_2$ 20% in $Cl_2/BCl_3$ plasma. And, we obtained the results that the etch rate increases as rf power increases and chamber pressure decreases. The characteristics of the plasmas were estimated using optical emission spectroscopy (OES).

  • PDF

The Characteristics of (Ba,Sr)$TiO_3$ Thin Films Etched With The high Density $BCl_3/Cl_2$/Ar Plasma ($BCl_3/Cl_2$/Ar 고밀도 플라즈마에서 (Ba,Sr)$TiO_3$ 박막의 식각 특성에 관한 연구)

  • Kim, Seung-Bum;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.863-866
    • /
    • 1999
  • (Ba,Sr)$TiO_3$ thin films have attracted groat interest as new dielectric materials of capacitors for ultra-large-scale integrated dynamic random access memories (ULSI-DRAMs) such as 1 Gbit or 4 Gbit. In this study, inductively coupled $BCl_3/Cl_2$/Ar plasmas was used to etch (Ba,Sr)$TiO_3$ thin films. RF power/dc bias voltage = 600 W/-250 V and chamber pressure was 10 mTorr. The $Cl_2/(Cl_2+Ar)$ was fixed at 0.2, the (Ba,Sr)$TiO_3$ thin films were etched adding $BCl_3$. The highest (Ba,Sr)$TiO_3$ etch rate is 480$\AA/min$ at 10 % $BCl_3$ adding to $Cl_2$/Ar. The characteristics of the plasmas were estimated using optical emission spectroscopy (OES). The change of Cl, B radical density measured by OES as a function of $BCl_3$ percentage in $Cl_2$/Ar. The highest Cl radical density was shown at the addition of 10% $BCl_3$ to $Cl_2$/Ar. To study on the surface reaction of (Ba,Sr)$TiO_3$ thin films was investigated by XPS analysis. Ion enhancement etching is necessary to break Ba-O bond and to remove $BaCl_2$. There is a little chemical reaction between Sr and Cl, but Sr is removed by physical sputtering. There is a chemical reaction between Ti and Cl, and Tic14 is removed with ease. The cross-sectional of (Ba,Sr)$TiO_3$ thin film was investigated by scanning electron microscopy (SEM), the etch slope is about $65\;{\sim}\;70$.

  • PDF

The etching of $HfO_2$ thin film as the ion energy distributions in the $BCl_3/Ar$ inductively coupled plasma system ($BCl_3/Ar$ 유도 결합 플라즈마 시스템해서 이온 에너지 분포에 따른$HfO_2$ 박막 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Kyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-II
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.117-118
    • /
    • 2006
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma (ICP) system. The ion energy distribution functions in an inductively coupled plasma was analyzed by quadrupole mass spectrometer with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20% and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions (IEDs) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a O2 addition of 2 sccm into the $BCl_3/(BCl_3+ Ar)$ of 20% plasma.

  • PDF