• Title/Summary/Keyword: $O_{3}$ concentration

Search Result 5,148, Processing Time 0.032 seconds

An ESR Study of Amino Acid and Protein Free Radicals in Solution Part VI. Enzymatic Inactivation of Lysozyme in Aqueous Solution Resulting from Exposure to $Ti-H_2O_2$ System and Gamma-Irradiation

  • Hong, Sun-Joo;Piette, L.H.
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.80-83
    • /
    • 1972
  • The activity change of lysozyme resulted from its exposure to $Ti-H_2O_2$system in aqueous liquid at room temperature and to ${\gamma}$-irradiation in ice at $195^{\circ}K$ has been measured at room temperature with a Cary-14 spectrophotometer. The enzymatic activity of lysozyme which had been added to a previously flow-mixed solution of $TiCl_3$ and $H_2O_2$ (System I) was compared with the activity of a lysozyme-$H_2O_2$ solution after flow-mixing with $TiCl_3$ (System II), considering the differences between these two activity changes as the extent of the enzymatic inactivation by the involvement of OH radical reaction. The fraction of lysozyme inactivated by OH radical in the system containing 0.0025 M $TiCl_3-0.1M$ $H_2O_2$ (ph 3.5) was 13%, When the $TiCl_3$ concentration is double (pH 3.0), the fraction of enzyme inactivated increases to 36%. The activity of the system containing 0.025 M $TiCl_3-0.1$ M $H_2O_2$ (pH 1.5) was essentially zero. The results seem to support the previos view that the production of OH radical should be proportional to $TiCl_3$ concentration when $H_2O_2$ is present in excess. Increase in the extent of inactivation found in system I with increasing $TiCl_3$ concentration may be due to a pH effect. $H_2O_2$ seems to be less effective than $TiCl_3$ in the inactivation. 1% lysozyme solution, when ${\gamma}$-irradiated with a total dose of 3M rads, loses about 20% of its activity. Lowering of temperature also was found to yield a reduction in enzymatic activity.

  • PDF

Controlling Electrical Properties in Zinc Oxide Thin Films by Organic Concentration

  • Yun, Gwan-Hyeok;Han, Gyu-Seok;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.209.2-209.2
    • /
    • 2013
  • We proposed and fabricated zinc oxide thin-film transistors (TFTs) employing 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD) that results in highly stable and high performance. The 4MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn:4MP pulses. The n-type carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}/cm^3$ to $2.903{\times}10^{17}/cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of 8.4 $cm^2/Vs$ and the on/off current ratio of 106. Such 4MP doped ZnO TFTs exhibited relatively good stability (${\Delta}V_{th}$: 2.4 V) under positive bias-temperature stress while the TFTs with only ZnO showed a 4.3 ${\Delta}V_{th}$ shift, respectively.

  • PDF

Characteristics in Atmospheric Chemistry between NO, NO2 and O3 at an Urban Site during MAPS (Megacity Air Pollution Study)-Seoul, Korea (서울 도심대기의 NO, NO2와 O3 사이의 대기화학적 특성 연구)

  • Kim, Deug-Soo;Jeong, Jinsang;Ahn, Joonyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.422-434
    • /
    • 2016
  • This study was conducted to understand roles of $NO_x(=NO+NO_2)$ on high $O_3$ episodes at an urban monitoring station in Seoul. Concentrations of NO, $NO_2$, $NO_y$ and $O_3$ were measured intensively at KIST monitoring station which located at urban center in Seoul metropolitan area during May 18~June 13, 2015. Sampling period was planed because high $O_3$ and PM occurred frequently during from late spring to early summer months in Seoul. The experimental site locates in NW from center of Seoul and is surrounded by residential area. Belt highway of the city runs from north to west side nearby experimental site. Vehicle exhaust emissions due to heavy traffic influenced $NO_x$ concentration at the site during northwesterly wind. Specific $NO_2$ concentration was measured by Blue Light photolytic converter, and it was compared to $NO_2$ concentration measured by molybedenum converter. $[NO_2]_{phtolysis}$ was usually lower than $[NO_2]_{molybedenum}$ during the experiment period; however their diurnal variations were very similar. The linear relationship between these $NO_2$ concentrations was found to be $[NO_2]_{phtolysis}$=0.64 $[NO_2]_{molybedenum}$ - 2.6, $r^2$=0.83 during May 16~8, 2015. The difference between $NO_2$ by molybdenum converter and by photolytic converter (${\Delta}NO_2=[NO_2]_{molybedenum}-[NO_2]_{phtolysis}$) accounted for residual $NO_y$ which can represent $NO_z$ (=$NO_y-NO_x$). $O_3$ concentration showed typical daily trend which has maximum at late afternoon and minimum during the night. $O_3$ increased at a rate of 7 ppb/hr since 8 am. and reached the maximum concentration (~80 ppb) at 3 pm.. The diurnal pattern of $O_3$ was inversely related with that of $NO_2$, suggesting that the formation of $O_3$ was the result of photochemical activity of $NO_2$.

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S.;Borse, P. H.;Lee, J. S.;Lim, K. T.;Jung, O. S.;Jeong, E. D.;Bae, J. S.;Kim, H. G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.95-99
    • /
    • 2011
  • $CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Effect of Polyphenolic Compounds from Green Tea Leaves on Production of Hydroperoxide for Lipid Oxidation in Corn Oil-in-Water Emulsion (녹차 페놀류가 corn oil-in-water emulsion의 산화 중 hydroperoxide 생성에 미치는 영향)

  • Cho, Young-Je;Kim, Byung-Gyu;Chun, Sung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Effect of polyphenolic compounds from green tea leaves and surfactant micelles on lipid oxidation in corn oil-in-water emulsion (O/W) wag determined. Concentrations of polyphenolic compound and surfactant in continuous phase of O/W were measured. Particle size of O/W with 17 mM Brij 700 and 5% corn oil increased with increasing concentration of polyphenolic compound (100-200 ppm). Concentration of surfactant in the continuous phase was lower than that of control. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in O/W emulsions containing polyphenolic compounds decreased with increasing concentration of polyphenolic compounds (100-200 ppm). Inhibition of hydroperoxide and headspace hexanal produced via lipid oxidation by polyphenolic compounds in O/W was BHT>procyanidin B3-3-O-gallate>(+)-gallocatechin >(+)-catechin.

Effect of Silicate Ions on the Hydration of 4CaO · Al2O3 · Fe2O3 with Gypsum

  • You, Kwang-Suk;Ahn, Ji-Whan;Kim, Hwan;Goto, Seishi
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.642-646
    • /
    • 2004
  • Na$_2$Si$_2$O$_{5}$ added to the solution affects the hydration of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ with calcium sulfate. The reaction between 4CaOㆍAl$_2$O$_3$ Fe$_2$O$_3$and CaSO$_4$ㆍ 2$H_2O$ decrease with increasing amount of Na$_2$Si$_2$O$_{5}$ in solution, owing to low hydraulic reactivity of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$by the adsorption of silicate ions on the surface of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles. The dissolution rate of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles deceased with the increase of the concentration of silicate ion in solution. When the 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ particles was hydrated in gypsum - Na$_2$Si$_2$O$_{5}$ solution, the hydration was retarded and the rate could not discriminate between formation of ettringite and that of monosulfate, and it stopped in high concentration of silicate ions. However, silicate ion did not any effect on the dissolution rate of gypsum.ypsum.

Facile synthesis and characteristics of monodispersed ZnGa2O4 microsphere via solvothermal method (용매열합성법을 통한 단분산된 ZnGa2O4 구형 입자의 제조 및 특성)

  • Woo, Moo Hyun;Kang, Bong Kyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2016
  • Monodispersed $ZnGa_2O_4$ microspheres were synthesized by a facile two-step process consisting of a solvothermal method and calcination process. The prepared monodispersed $ZnGa_2O_4$ microspheres were aggregated into 3D microstructures by self-assembly with a large number of small $ZnGa_2O_4$ particles generated in nucleation. This nucleation and self-assembly making hierarchical microstructures were depended on the concentration of PEG (polyethylene glycol) due to CAC (critical aggregation concentration) theory. And also we controlled the amount of zinc acetate to make pure $ZnGa_2O_4$ phase. Additionally, to fix the optimized calcination condition, sample was characterized by TG-DTA to prove the thermal property in the calcination process and by FT-IR to identify the changes of functional group bonding between each element of the $ZnGa_2O_4$ precursor and oxide calcined at $900^{\circ}C$ for 1 h.

The Luminescent Properties of SrTiO$_3$ :Al, Pr Red Phosphor (Al과 Pr이 첨가된 SrTiO$_3$ 적색 형광체의 발광 특성)

  • 박정규;류호진;박희동;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.478-482
    • /
    • 1999
  • SrTiO3 :Al, Pr phosphor as an oxide compound phosphor is expect to be applied for a field emission display(FED). In this phosphor the excitation spectrum shows a different tendency according to an addition Al3+ and Pr3+ In this excitation spectrum the main peak at 359 nm represent excitation level of Pr3+(1S0longrightarrow1D2 transition) and the absorption characteristic according to Ti/Sr molar ratio is influenced by the structure symmetry. The emission spectrum exhibits the red luminescence with the radiative decay of the 1D2 states(1D2 longrightarrow3H4 transition) The concentration quenching phenomena at 1D2 state shows up as Al3+ and Pr3+ ion concentration increases.

  • PDF

Method for the Measurement of Dissolved Oxygen in a Cell Culture Microchannel Using Oxygen-Sensitive Luminescence (산소 민감 발광 염료를 이용한 마이크로 채널 내에서 배양되는 세포 주변의 산소 농도 측정)

  • Lee, Seung-Youl;Jin, Song-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.533-538
    • /
    • 2012
  • In this study, we used an $O_2$-sensitive luminescent dye to measure the $O_2$ concentration of culture media around HeLa cells cultured in a microchannel. $[Ru(bpy)_3]^{2+}$, which dissolves easily in water and which has no phototoxic effect, was used as the $O_2$-sensitive dye. The ratiometric sensing method was applied by introducing calcein as the $O_2$-insensitive dye, in order to overcome the disadvantages of intensity-based sensing. By performing calibration with an amperometric $O_2$ sensor, we could calculate the exact concentration of $O_2$ in the culture media. We applied this technique to measure the $O_2$ concentration around the cultured cells in the microchannel. As expected, the $O_2$ concentration gradually decreased as the cells moved farther away from the channel. This method is expected to be applicable to the investigation of hypoxia, which occurs commonly in scaffolds.

Preparation of Chlorine Dioxide Aqueous Solution by Un-divided Electrochemical Cell using RuO2 anode (RuO2를 양전극으로 사용한 무격막 전해셀에서의 이산화염소수 제조)

  • Kwon, Tae Ok;Park, Bo Bae;Roh, Hyun Cheul;Moon, Il Shik
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2009
  • Generation of chlorine dioxide ($ClO_2$) was studied by the un-divided electrochemical cell system using $RuO_2$ anode material. Sodium chlorite ($NaClO_2$) was used as a precursor compound of chlorine dioxide. Effect of various operating parameters such as feed solution flow rate, initial solution pH, $NaClO_2$ and NaCl conc., and applied current density on the produced chlorine dioxide concentration and solution pH were investigated in un-divided electrochemical cell system. Produced chlorine dioxide concentration and solution pH were strongly depends on the initial solution pH and feed solution flow rate. Sodium chloride (NaCl) was not only good electrolyte, it was also used as a raw material of chlorine dioxide with $NaClO_2$. Observed optimum conditions were flow rate of feed solution (90 mL/min), initial pH (2.3), $NaClO_2$ concentration (4.7 mM), NaCl concentration (100 mM), and current density ($5A/dm^2$). Produced chlorine dioxide concentration was around 350 mg/L and solution pH was around 3.