• Title/Summary/Keyword: $Na^+$ transport

Search Result 516, Processing Time 0.018 seconds

Different Phosphate Transport in the Duodenum and Jejunum of Chicken Response to Dietary Phosphate Adaptation

  • Fang, Rejun;Xiang, Zhifeng;Cao, Manhu;He, Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1457-1465
    • /
    • 2012
  • Intestinal phosphate (Pi) absorption across the apical membrane of small intestinal epithelial cells is mainly mediated by the type IIb Na-coupled phosphate co-transporter (NaPi-IIb), but its expression and regulation in the chicken remain unclear. In the present study, we investigated the mRNA and protein levels of NaPi-IIb in three regions of chicken small intestine, and related their expression levels to the rate of net phosphate absorption. Our results showed that maximal phosphate absorption occurs in the jejunum, however the highest expression levels of NaPi-IIb mRNA and protein occurs in the duodenum. In response to a low-Pi diet (TP 0.2%), there is an adaptive response restricted to the duodenum, with increased brush border membrane (BBM) Na-Pi transport activity and NaPi-IIb protein and mRNA abundance. However, when switched from a low-(TP 0.2%) to a normal diet (TP 0.6%) for 4 h, there is an increase in BBM NaPi-IIb protein abundance in the jejunum, but no changes in BBM NaPi-IIb mRNA. Therefore, our study indicates that Na-Pi transport activity and NaPi-IIb protein expression are differentially regulated in the duodenum vs the jejunum in the chicken.

Selective transport characteristics of alkali metal ions through a cell membrane model which irradiated by γ-ray (감마선이 조사된 세포막모델을 통한 알칼리금속 이온의 선택적 전달 특성)

  • Ko, Inho;Yeo, Jindong
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.85-91
    • /
    • 2013
  • The selective transport characteristics of $K^+$ and $Na^+$ of cell membrane model which irradiated by 60Co ${\gamma}$-ray was investigated. The cell membrane model used in this experiment was a Na+ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH 0.5-3, temperature $15-65^{\circ}C$), first, the selectivity of $K^+$ and the ratio K+/Na+ of membrane which was not irradiated was about 1.06 - 1.13 and second, that of K+ and the ratio $K^+/Na^+$ of membrane which was irradiated was near about 0. And the driving force of pH of irradiated membrane was significantly increased about 4-5 times than membrane which was not irradiated. As selective transport of K+ and Na+ of cell membrane model were abnormal, cell damages were appeared at cell.

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Tanaka, Yoshinobu;Uchino, Hazime;Murakami, Masayoshi
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2012
  • Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

Interpretation of Permeation Characteristics and Membrane Transport Models Through Polyamide Reverse Osmosis Membrane (Polyamide 역삼투막의 투과성능과 막 이동 모델의 해석)

  • 김노원;김영길;이용택
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • In this study, we present a noble study far membrane transport models using chlorine resistance of polyamide RO membranes. Membrane transport mechanism is investigated by the comparison of membrane permeation performance under the continuous and Intermittent operation modes with mixed feed solution containing NaOCl and NaCl. Analysis of permeation performance indicates that solution-diffusion model and preferential adsorption-capillary flow model are relatively efficient according to operation mode. Under the continuous flow state, mass transfer depends on preferential adsorption-capillary flow model rather than solution-diffusion model. On the other hand, it prefers solution-diffusion model to preferential adsorption-capillary flow model under the stationary state. SEM images of NaOCl treated membrane surfaces strongly support these conclusions. These surface images reveal that NaOCl treated membrane in continuous operation mode exhibits ridge and valley structure in some fraction of the surface area, whereas that in intermittent operation mode shows surface degradation entirely.

The Effects of Diphenylhydantoin and Ouabain on ATPase Activity in Rat Erythrocyte Membranes (Diphenylhydantoin 및 Ouabain 이 흰쥐 적혈구세포막 ATPase에 미치는 영향)

  • Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1970
  • The effects of ouabain and diphenylhydantoin on ATPase activity in rat erythrocyte membranes were studied and also influence of K on ATPase activity was studied. The ATPase activity of rat erythrocyte membrane has been shown to consist of two components. The first component requires the Mg but occurs in the absence of Na or K (Mg-ATPase) and is not inhibited by ouabain and stimulated by diphenylhydantoin. The second component requires the presence of Mg and also Na or K (Na-K-Mg-ATPase). It is inhibited by ouabain and is stimulated by diphenylhydantoin in low Na concentration and inhibited in high Na concentration. K inhibit Na-K-Mg-ATPase which is inhibited by ouabain. Ouabain and diphenylhydantoin show reversed effect to Na-K-Mg-ATPase activity. It suggest that the therapeutic effect of diphenylhydantoin on digitalis induced cardiac arrhythmia may be resulted from their effect on ion transport mechanism of cell membrance. And the relevance of these findings to the action of ouabain and diphenylhydantoin on membrane transport mechanism is discussed.

  • PDF

Effects of SITS on Sodium Transport, Oxygen Consumption and Na-K-ATPase of the Frog Skin (개구리 피부의 Sodium 이동, 산소 소모량 및 Na-K-ATPase에 대한 SITS의 영향)

  • Lee, Seung-Mook;An, Mi-Ra;Lee, Syng-Ill;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 1983
  • Effects of SITS (4-acetamido-4'-isothiocyano-2, 2'-disulfonic stilbene) on a $Na^+$ transport, tissue oxygen consumption and Na-K-ATPase activity were studied in isolated frog skin preparations. $Na^+$ transport was estimated by measuring the short-circuit current(SC) across the skin; oxygen consumption was measured in separated epidermis as well as in intact skin; and Na-K-ATPase was assayed in $24,000{\times}g$ fraction of epidermal homogenates. The SCC across the skin Was rapidly and substantially reduced in the presence of 10 mM SITS in the medium bathing the outside(mucosal) surface of the skin. When the drug was added to the inside(serosal) bathing medium, there was about 20 min delay for inhibition of SCC and the effect was less pronounced. The above effect of SITS was independent of the presence of $Cl^-$ in the bathing medium. The oxygen consumption of the skin tissue was not affected by SITS, but the Na-K-ATPase activity of a subcellular fraction of the skin was significantly inhibited. These results suggest that SITS retards $Na^+$ transport across the frog skin primarily by interfering $Na^+$ entry across the mucosal membrance of the epithelial cell, although an effect on $Na^+$ pump can not be ruled out completely.

  • PDF

Effect of Cisplatin on $Na^+/H^+$ Antiport in the OK Renal Epithelial Cell Line

  • Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 1998
  • Cis-diamminedichloroplatinum II (cisplatin), an effective antitumor agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin in the renal proximal tubular transport system, OK cell line was selected as a cell model and $Na^+/H^+$ antiport activity was evaluated during a course of cisplatin treatment. The cells grown to confluence were treated with cisplatin for 1 hour, washed, and incubated for up to 48 hours. At appropriate intervals, cells were examined for $Na^+/H^+$ antiport activity by measuring the recovery of intracellular pH (pHi) after acid loading. Cisplatin of less than 50 ${\mu}M$ induced no significant changes in cell viability in 24 hours, but it decreased the viability markedly after 48 hours. In cells exposed to 50 ${\mu}M$ cisplatin for 24 hours, the $Na^+-dependent$ pHi recovery (i.e., $Na^+/H^+$ antiport) was drastically inhibited with no changes in the $Na^+-independent$ recovery. Kinetic analysis of the $Na^+-dependent$ pHi recovery indicated that the Vmax was reduced, but the apparent Km was not altered. The cellular $Na^+$ and $K^+$ contents determined immediately before the transport measurement appeared to be similar in the control and cisplatin group, thus, the driving force for $Na^+-coupled$ transport was not different. These results indicate that cisplatin exposure impairs the $Na^+/H^+$ antiport capacity in OK cells. It is, therefore, possible that in patients treated with a high dose of cisplatin, proximal tubular mechanism for proton secretion (hence $HCO_3^-$ reabsorption) could be attenuated, leading to a metabolic acidosis (proximal renal tubular acidosis).

  • PDF

Evidence for two $Na^+$/$H^+$ Antiport Systems in Escherichia coli

  • Seo, Sung-Yum
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.269-277
    • /
    • 1992
  • Several insertion mutants of Escherichia coli in the ant gene, coding for $Na^{+}$ $H^{+}$ antiport activity, showed littel, if any, reduction in the antiport activity. $Na^{+}$ dependent transport activity also remained at wild type level. These facts led to the idea that E. coli has evolved at least two distinct systems for extrusion of $Na^{+}$ The antiport activities were studied under various conditions to reveal different properties of these systems. For convenience these activities are referred to as major and minor activities. The distinguishing properties of the two systems include : kinetics (Km, Vm) at pH 7.8, competition pattern between $Na^{+}$ and Li$^{+}$ , pH profiles, pattern of the change in kinetic parameters as a function of pH, and sensitivity to protease, chemicals and heat.

  • PDF

Studies on Preparation and Ion Exchange Characteristics of Humic Acid Membranes (Humic Acid 분리막의 제조와 이온교환 특성에 관한 연구)

  • 이용택
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.136-141
    • /
    • 1997
  • Humic acid has been extracted and purified from biologically nondegradable humic substances. Using the ion exchange capability of carboxylic acids which are the main component of the humic acids, a membrane was prepared with poly(viny1 alcohol). Its transport behavior of biologically active ions, $K^+$and $Na^+$, were investigated. The ion transport velocity increased with hydrogen ion concentration, especially, in the range of $10^-1$~$10^0$. The selectivity increased with increasing the concentrations of $K^{+}$ and Na$^{+}$, In particular, the transport velocity of $K^+$ increased twice compared to that of $Na^+$ at the 100 hydrogen ion concentration. In this regards, humic acid may be used as a new material for ion exchange membranes.

  • PDF

Effect of Cadmium on Organic Acid Transport System in Renal Basolateral Membrane

  • Kim, Ghi-Chan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.279-288
    • /
    • 1996
  • Chronic exposure to cadmium impairs various renal tubular functions, including organic acid (anion) secretion. To investigate the mechanism of cadmium-induced alterations in the organic anion transport system, kinetics of p-aminohippurate (PAH) uptake was studied in renal cortical basolateral membrane vesicles (BLMV) isolated from cadmium-intoxicated rats (adult male Sprague-Dawley). Cadmium intoxication was induced by subcutaneous injections of $CdCl_{2}$ (2 mg Cd/kg per day) for 3 weeks. The renal plasma membrane vesicles were prepared by Percoll gradient centrifugation. The vesicular uptake of $^{14}C$-PAH was determined by rapid filtration technique using Millipore filter. Cadmium intoxication resulted in a marked attenuation of $Na^{+}$-dependent, ${\alpha}$-ketoglutarate (${\alpha}$KG)-driven PAH uptake with no changes in $Na^{+}$ and ${\alpha}$KG-independent transport component. Kinetic analysis indicated that Vmax, but not Km, of the $Na^{+}$-dependent, ${\alpha}$KG-driven component was reduced. A similar reduction of $Na^{+}$-dependent, ${\alpha}$KG-driven PAH uptake was observed in normal membrane vesicles directly exposed to inorganic cadmium in vitro, and this was accompanied by an inhibition of both $Na^{+}$-dependent ${\alpha}$KG uptake and ${\alpha}$KG-PAH exchange activity. These results indicate that during chronic exposure to cadmium, free cadmium ions liberated in the proximal tubular cytoplasm directly interact with the basolateral membrane and impair the active transport capacity for organic anions, most likely due to an inhibition of both $Na^{+}$-dicarboxylate cotransporter and dicarboxylate-organic anion antiporter activities.

  • PDF