DOI QR코드

DOI QR Code

Different Phosphate Transport in the Duodenum and Jejunum of Chicken Response to Dietary Phosphate Adaptation

  • Fang, Rejun (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Xiang, Zhifeng (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Cao, Manhu (College of Animal Science and Technology, Hunan Agricultural University) ;
  • He, Jia (College of Animal Science and Technology, Hunan Agricultural University)
  • Received : 2012.04.10
  • Accepted : 2012.06.02
  • Published : 2012.10.01

Abstract

Intestinal phosphate (Pi) absorption across the apical membrane of small intestinal epithelial cells is mainly mediated by the type IIb Na-coupled phosphate co-transporter (NaPi-IIb), but its expression and regulation in the chicken remain unclear. In the present study, we investigated the mRNA and protein levels of NaPi-IIb in three regions of chicken small intestine, and related their expression levels to the rate of net phosphate absorption. Our results showed that maximal phosphate absorption occurs in the jejunum, however the highest expression levels of NaPi-IIb mRNA and protein occurs in the duodenum. In response to a low-Pi diet (TP 0.2%), there is an adaptive response restricted to the duodenum, with increased brush border membrane (BBM) Na-Pi transport activity and NaPi-IIb protein and mRNA abundance. However, when switched from a low-(TP 0.2%) to a normal diet (TP 0.6%) for 4 h, there is an increase in BBM NaPi-IIb protein abundance in the jejunum, but no changes in BBM NaPi-IIb mRNA. Therefore, our study indicates that Na-Pi transport activity and NaPi-IIb protein expression are differentially regulated in the duodenum vs the jejunum in the chicken.

Keywords

References

  1. Arima, K., E. R. Hines, P. R. Kiela, J. B. Drees, J. F. Collins and F. K. Chishan. 2002. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G426-G434.
  2. Bai, L., J. F. Collins and F. K. Ghishan. 2000. Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am. J. Physiol. Cell Physiol. 279:C1135-C1143.
  3. Blahos, J. and A. D. Care. 1981. The jejunumis the site of maximal rate of intestinal absorption of phosphate in chicks. Physiol. Bohemoslov. 30:157-159.
  4. Borowitz, S. M. and F. K. Ghishan. 1989. Phosphate transport in human jejunal bnrsh border membrane vesicles. Gastroenterology 96:4-10.
  5. Borowitz, S. M. and G. S. Granrud. 1992. Ontogency of intestinal phosphate absorption in rabbits. Am. J. Physiol. 262:G847-G853.
  6. Collins, J. F. and F. K. Ghishan. 1994. Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate ($Na^{+}$/Pi) transporter in the control and hypophosphatemic mouse. FASEB. J. 8:862-868.
  7. Cross, H. S., H. Debiec and M. Peterlik. 1990. Mechanism and regulation of intestinal phosphate absorption. Miner. Electrolyte Metab. 16:115-124.
  8. Ghishan, F. K., N. Arab and H. Shibata. 1990. Intestinal phosphate transport in spontaneously hypertensive rats and genetically matched controls. Gastroenterology 99:106-112.
  9. Hashimoto, M., D. Wang, T. Kamo, Y. Zhu, T. Tsujiuchi, Y. Konishi, M. Tanaka and H. Sugimura. 2000. Isolation and localization of type IIb Na/Pi cotransporter in the developing rat lung. Am. J. Pathol. 157:21-27. https://doi.org/10.1016/S0002-9440(10)64512-9
  10. Hattenhaur, O., M. Traebert, H. Murer and J. Biber. 1999. Regulation of small intestinal Na-Pi type IIb cotransporter by dietary phosphate intake. Am. J. Physiol. Gasreoinrest. Liver Physiol. 277:G756-762.
  11. Heaney, R.P. and B. E. C. Nordin. 2002. Calcium effects nn phnsphoius absorption:implications for the prevention and co-therapy of osteoporosis. J. Am. Coll. Nutr. 21:239-204. https://doi.org/10.1080/07315724.2002.10719216
  12. Hector Giral, Yupanqui Caldas, Eileen Sutherland, Paul Wilson, Sophia Breusegem, Nicholas Barry, Judith Blaine, Tao Jiang, Xiaoxin X. Wang and Moshe Levi. 2009. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am. J. Physiol. Renal Physiol. 297:1466-1475. https://doi.org/10.1152/ajprenal.00279.2009
  13. Hilfiker, H., O. Hattenhauer, M. Traebert, I. Forster, H. Murer and J. Biber. 1998. Characterization of a murine type II sodiumphosphate cotransporter expressed in mammalian intestine. Proc. Natl. Acad. Sci. USA. 95:14564-14569. https://doi.org/10.1073/pnas.95.24.14564
  14. Huber, K., C. Walter, B. Schroder and G. Breves. 2002. Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R296-R302.
  15. Hurwitz, S. and A. Bar. 1970. The sites of calcium and phosphate absorption in the chick. Poult. Sci. 49:324-325. https://doi.org/10.3382/ps.0490324
  16. Kiyamova, R., V. Gryshkova, G. Ovcharenko and D. Lituyev et al. 2008. Development of monoclonal antibodis specific for the human sodium-dependent phosphate cotransporter NaPi2b. Hybridoma 27:277-284. https://doi.org/10.1089/hyb.2008.0015
  17. Magagnin, S., A. Werner, D. Markovich, V. Sorribas, G. Stange, J. Biber and H. Murer. 1993. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc. Natl. Acad. Sci. USA. 90:5979-5983. https://doi.org/10.1073/pnas.90.13.5979
  18. McHaffie, G. S., C. Graham, B. Kohl, U. Strunck-Warnecke and A. Werner. 2007. The role of an intracellular cysteine stretch in the sorting of the type II Na/phosphate cotransporter. Biochim. Biophys. Acta. 1768:2099-2106. https://doi.org/10.1016/j.bbamem.2007.05.017
  19. Miyamoto, K., S. Tatsumi, T. Sondoda, H. Yamamoto, H. Minami, Y. Taketani and E. Takeda. 1995. Cloning and functional expression of a Na-dependent phosphate cotransporter from human kidney: cDNA cloning and functional expression. Biochem. J. 301:81-85.
  20. Murer, H., I. Forster and J. Biber. 2004. The sodium phosphate cotransporter family SLC34. Pflugers. Arch. 447:763-767. https://doi.org/10.1007/s00424-003-1072-5
  21. Nakagawa, N. and F. K. Ghishan. 1994. Low phosphate diet upregulates the renal and intestinal sodium-dependent phosphate transporter in vitamin D-resistant hypophosphatemic mice. Proc. Soc. Exp. Biol. Med. 205:162-167. https://doi.org/10.3181/00379727-205-43692
  22. Palmada, M., M. Dieter, A. Speil, C. Bohmer, A. F. Mack, H. J. Wagner, K. Klingel, R. Kandolf, H. Murer, J. Biber, E. I. Closs and F. Lang. 2004. Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4-2 and by serum- and glucocorticoid-dependent kinase 1. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G143-G150. https://doi.org/10.1152/ajpgi.00121.2003
  23. Quamme, G. A. 1985. Phosphate transport in intestinal brush-border membrane vesicles: effect of pH and dietary phosphate. Am. J. physiol. 249:G168-G176.
  24. Radanovic, T., C. A. Wagner, H. Murer and J. Biber. 2005. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P (i) diet of the type IIb Na+-Pi cotransporter in mouse small intestine. Am. J. Physiol. 288:G496-G500.
  25. Saddoris, K. L., J. C. Fleet and J. S. Radcliffe. 2010. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration. J. Nutr. 4:731-736.
  26. Segawa, H., I. Kaneko, S. Yamanaka, M. Ito, M. Kuwahata, Y. Inoue, S. Kato and K. Miyamoto. 2004. Intestinal Na-Pi cotranspotter adaptation to dietuy Pi content in vitamin D receptor null mice. Am. J. Physiol. Renal Physiol. 287:F39-47. https://doi.org/10.1152/ajprenal.00375.2003
  27. Sugiura, S. H., K. Kelsey and R. P. Ferraris. 2007. Molecular and conventional responses of large rainbow trout to dietary phosphorus restriction. J. Comp. Physiol. B. 177:461-472. https://doi.org/10.1007/s00360-007-0144-9
  28. Villa-Bellosta, R. and V. Sorribas. 2010. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers. Arch. 459:499-508. https://doi.org/10.1007/s00424-009-0746-z
  29. Xu, H., L. Bai, J. F. Collins and F. K. Ghishan. 2002. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1, 25-(OH) 2 vitamin D3. Am. J. Physiol. Cell Physiol. 282:C487-C493. https://doi.org/10.1152/ajpcell.00412.2001
  30. Yan, F., R. Angel and C. M. Ashwell. 2007. Characterization of the chicken small intestine type IIb sodium phosphate cotransporter. Poult. Sci. 86:67-76. https://doi.org/10.1093/ps/86.1.67

Cited by

  1. Identifying the location of epidermal growth factor-responsive element involved in the regulation of type IIb sodium-phosphate cotransporter expression in porcine intestinal epithelial cells vol.101, pp.6, 2016, https://doi.org/10.1111/jpn.12645
  2. Subsequent bone and metabolic responses of broilers to high-non-phytate phosphorus diets in the starter period vol.58, pp.4, 2017, https://doi.org/10.1080/00071668.2017.1327702
  3. Effects of mechanistic target of rapamycin signaling pathway on the estrogen-mediated NaPi-IIb protein expression in pig small intestinal epithelial cells1 vol.94, pp.suppl_3, 2016, https://doi.org/10.2527/jas.2015-9866
  4. Epidermal Growth Factor, through Alleviating Oxidative Stress, Protect IPEC-J2 Cells from Lipopolysaccharides-Induced Apoptosis vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030848
  5. Dietary phytase supplementation during peak egg laying cycle of White Leghorn hens on nutrient utilization and functional gene mRNA expression in duodenum and kidney pp.1744-4179, 2019, https://doi.org/10.1080/09291016.2018.1499220
  6. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers vol.119, pp.12, 2018, https://doi.org/10.1017/S0007114518000934
  7. Tissue-Wide Gene Expression Analysis of Sodium/Phosphate Co-Transporters in Pigs vol.20, pp.22, 2019, https://doi.org/10.3390/ijms20225576
  8. Kinetics of phosphorus absorption and expressions of related transporters in primary cultured duodenal epithelial cells of chick embryos vol.104, pp.1, 2012, https://doi.org/10.1111/jpn.13260
  9. Additivity of apparent and standardised ileal digestibility of phosphorus in corn and canola meal mixed diets; basal endogenous loss of phosphorus responses to phytase and age in broiler chickens vol.62, pp.2, 2012, https://doi.org/10.1080/00071668.2020.1825621