• 제목/요약/키워드: $N_2O$ Emission

검색결과 600건 처리시간 0.02초

Nitrous Oxide Emissions from Red Pepper, Chinese Cabbage, and Potato Fields in Gangwon-do, Korea

  • Seo, Youngho;Kim, Gunyeob;Park, Kijin;Kim, Kyunghi;Jung, Yeong-Sang
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.463-468
    • /
    • 2013
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission from agricultural field is essential to develop national inventories of greenhouse gases (GHGs) emission. The objective of the study was to develop emission factor to estimate direct $N_2O$ emission from agricultural field in Gangwon-do, Korea by measuring $N_2O$ emissions from potato (Solanum tuberosum), red pepper (Capsicum annum L.), and Chinese cabbage (Brassica campestris L.) cultivation lands from 2009 to 2012. Accumulated $N_2O$ emission was $1.48{\pm}0.25kg$ $N_2O-N\;ha^{-1}$ for red pepper, $1.27{\pm}0.27kg$ $N_2O-N\;ha^{-1}$ for potato, $1.49{\pm}0.06kg$ $N_2O-N\;ha^{-1}$ for Chinese cabbage cultivated in spring, and $1.14{\pm}0.22kg$ $N_2O-N\;ha^{-1}$ for fall Chinese cabbage. Emission factor of $N_2O$ calculated from accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0051{\pm}0.0016kg$ $N_2O-N\;ha^{-1}$ N for cropland in Gangwon province. More extensive study is deserved to be conducted to develop $N_2O$ emission factor for upland crops in Korea through examining the emission factors from various regions and crops because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Developing N2O Emission Factor in Red Pepper Fields to Quantify N2O Emission of Agricultural Field

  • Kim, Gun-Yeob;Park, Woo-Kyun;Lee, Jong-Sik;Jeong, Hyun-Cheol;Lee, Sun-Il;Choi, Eun-Jung;Kim, Pil-Joo;Seo, Young-Ho
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.598-603
    • /
    • 2014
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic sources, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission in the agricultural field is essential to develop National inventories of greenhouse gases (GHGs) emission. The objective of this study was to develop emission factor to estimate direct $N_2O$ emission from agricultural field by measuring $N_2O$ emissions in the red pepper cultivating field from 2010 to 2012. Emission factor of $N_2O$ calculated from accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0086{\pm}0.00043kg$ $N_2O-N\;kg^{-1}$ N resulted from three year experiment of the research sites. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Assessment of N2O Emission Factor of Autumn Chinese Cabbage Fields at Three Different Geographical Location in South Korea

  • Kim, Gun-Yeob;Park, Woo-Kyun;Jeong, Hyun-Cheol;Lee, Sun-il;Kim, Pil-Joo;Seo, Young-Ho;Na, Un-sung
    • 한국토양비료학회지
    • /
    • 제48권3호
    • /
    • pp.163-169
    • /
    • 2015
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic sources, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission in the agricultural field is essential to develop national inventories of greenhouse gases (GHGs) emission. The objective of this study was to develop an emission factor to estimate the direct $N_2O$ emission from an agricultural field cultivated with the Chinese cabbage during autumn season in 2010-2012. Emission factor of $N_2O$ calculated over three years experiment using accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0058{\pm}0.00254kg\;N_2O-N\;kg^{-1}\;N$. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices as well as crop species.

도시고형폐기물 소각시설의 N2O 배출계수 개발 (The Development of N2O Emission Factor at Municipal Solid Waste Incinerator)

  • 고재철;최상현
    • 청정기술
    • /
    • 제25권1호
    • /
    • pp.40-45
    • /
    • 2019
  • 본 연구에서는 도시고형폐기물 소각시설을 대상으로 2018년 8월 27일부터 2018년 10월 22일 동안 총 3회에 걸쳐 도시고형폐기물의 소각에 의해 발생되는 $N_2O$ 농도를 24시간 동안 연속적으로 측정하여 발생량과 배출특성을 조사하였으며, 배출가스 중 $N_2O$ 농도측정은 비분산 적외선 분석기(NDIR)를 이용하였다. $N_2O$ 배출특성을 조사한 결과 도시고형폐기물 소각시설의 $N_2O$ 발생량 및 발생농도는 폐기물의 성상 보다는 소각시설의 소각로 온도와 산소농도 같은 운전조건에 따라 상이하게 발생하는 것으로 판단된다. 도시고형폐기물 소각시설의 $N_2O$ 일일평균 발생농도는 53.6 ~ 59.5 ppm이며, 전체 평균농도는 55.6 ppm으로 측정되었다. 또한 $N_2O$ 농도를 이용하여 계산된 $N_2O$ 발생량은 $90.41{\sim}108.44kg\;day^{-1}$이며, 평균 발생량은 $98.05kg\;day^{-1}$로 조사되었다. 이러한 결과를 바탕으로 도시고형폐기물 소각시설의 $N_2O$ 배출계수를 산출한 결과 $1,066.13g_{N_2O}\;ton_{waste^{-1}}$로 생활폐기물의 Tier 2 방법으로 산출된 $N_2O$ 배출계수에 비해 약 20배 정도 높은 결과를 얻었다. 따라서, 폐기물 종류와 소각량을 이용한 폐기물 소각시설의 $N_2O$ 발생량 산출방식은 정확성에 대한 보완이 필요할 것으로 판단된다.

Effect of Ammonium Concentration on the Emission of $N_2O$ Under Oxygen-Limited Autotrophic Wastewater Nitrification

  • Kim, Dong-Jin;Kim, Yu-Ri
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.988-994
    • /
    • 2011
  • A significant amount of nitrous oxide ($N_2O$), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on $N_2O$ emission. Cumulated $N_2O$-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l ${NH_4}^+$-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l ${NH_4}^+$-N. The results indicate that $N_2O$ emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased $N_2O$ emission. Comparative analysis of $N_2O$ emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more $N_2O$ than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the $N_2O$ emission from wastewater nitrification.

Assessment of Integrated N2O Emission Factor for Korea Upland Soils Cultivated with Red Pepper, Soy Bean, Spring Cabbage, Autumn Cabbage and Potato

  • Kim, Gun-Yeob;Na, Un-Sung;Lee, Sun-Il;Jeong, Hyun-Cheol;Kim, Pil-Joo;Lee, Jong-Eun;Seo, Young-Ho;Lee, Jong-Sik;Choi, Eun-Jung;Suh, Sang-Uk
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.720-730
    • /
    • 2016
  • Greenhouse-gas emission factors are widely used to estimate emissions arising from a defined unit of a specific activity. Such estimates are used both for international reporting to the United Nations Framework Convention on Climate Change (UNFCCC) and for myriad national and sub-national reporting purposes (for example, European Union Emissions Trading Scheme; EU ETS). As with the other so-called 'Kyoto protocol GHGs', the Intergovernmental Panel on Climate Change (IPCC) provides a methodology for national and sub-national estimation of $N_2O$ emissions, based on the sector from which the emissions arise. The objective of this study was to develop a integrated emission factor to estimate the direct $N_2O$ emission from an agricultural field cultivated with the red pepper, soy bean, spring cabbage, autumn cabbage and potato in 2010~2012. Emission factor of $N_2O$ calculated using accumulated $N_2O$ emission, N fertilization rate, and background $N_2O$ emission over three year experiment was $0.00596{\pm}0.001337kg$ $N_2O-N(N\;kg)^{-1}$. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Effect of Nitrogen Application Rates on Nitrous Oxide Emission during Crop Cultivations in Upland Soil

  • Lee, Jong-Eun;Yun, Yeo-Uk;Choi, Moon-Tae;Jung, Suck-Kee;Nam, Yun-Gyu;Pramanik, Prabhat;Kim, Pil-Joo
    • 한국환경농학회지
    • /
    • 제31권3호
    • /
    • pp.205-211
    • /
    • 2012
  • BACKGROUND: Generally, nitrogen (N) fertilization higher than the recommended dose is applied during vegetable cultivation to increase productivity. But higher N fertilization also increases the concentrations of nitrate ions and nitrous oxide in soil. In this experiment, the impact of N fertilization was studied on nitrous oxide ($N_2O$) emission to standardize the optimum fertilization level for minimizing $N_2O$ emission as well as increasing crop productivity. Herein, we developed $N_2O$ emission inventory for upland soil region during red pepper and Chinese milk vetch cultivation. METHODS AND RESULTS: Nitrogen fertilizers were applied at different rates to study their effect on $N_2O$ emission during red pepper and Chinese milk vetch cultivation. The gas samples were collected by static closed chamber method and $N_2O$ concentration was measured by gas chromatography. The total $N_2O$ flux was steadily increased due to increasing N fertilization level, though the overall pattern of $N_2O$ emission dynamics was same. Application of N fertilization higher than the recommended dose increased the values of both seasonal $N_2O$ flux (94.5% for Chinese cabbage and 30.7% for red pepper) and $N_2O$ emission per unit crop yield (77.9% for Chinese cabbage and 23.2% for red pepper). Nitrous oxide inventory revealed that the $N_2O$ emission due to unit amount of N application from short-duration vegetable field in fall (autumn) season (6.36 kg/ha) was almost 70% higher than that during summer season. CONCLUSION: Application of excess N-fertilizers increased seasonal $N_2O$ flux especially the $N_2O$ flux per unit yield during both Chinese cabbage and red pepper cultivation. This suggested that the higher N fertilization than the recommended dose actually facilitates $N_2O$ emission than boosting plant productivity. The $N_2O$ inventory for upland farming in temperate region like Korea revealed that $N_2O$ flux due to unit amount of N-fertilizer application for Chinese cabbage in fall (autumn) season was comparatively higher than that of summer vegetables like red pepper. Therefore, the judicious N fertilization following recommended dose is required to suppress $N_2O$ emission with high vegetable productivity in upland soils.

Selective Inhibition of Ammonia Oxidation and Nitrite Oxidation Linked to $N_2O$ Emission with Activated Sludge and Enriched Nitrifiers

  • Ali, Toor Umair;Kim, Minwook;Kim, Dong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.719-723
    • /
    • 2013
  • Nitrification in wastewater treatment emits a significant amount of nitrous oxide ($N_2O$), which is one of the major greenhouse gases. However, the actual mechanism or metabolic pathway is still largely unknown. Selective nitrification inhibitors were used to determine the nitrification steps responsible for $N_2O$ emission with activated sludge and enriched nitrifiers. Allylthiourea (86 ${\mu}M$) completely inhibited ammonia oxidation and $N_2O$ emission both in activated sludge and enriched nitrifiers. Sodium azide (24 ${\mu}M$) selectively inhibited nitrite oxidation and it led to more $N_2O$ emission than the control experiment both in activated sludge and enriched nitrifiers. The inhibition tests showed that $N_2O$ emission was mainly related to the activity of ammonia oxidizers in aerobic condition, and the inhibition of ammonia monooxygenase completely blocked $N_2O$ emission. On the other hand, $N_2O$ emission increased significantly as the nitrogen flux from nitrite to nitrate was blocked by the selective inhibition of nitrite oxidation.

국내 봄배추 재배지의 아산화질소 배출계수 개발에 관한 연구 (A Revised Estimate of N2O Emission Factor for Spring Chinese cabbage fields in Korea)

  • 김건엽;박우균;정현철;이선일;최은정;김필주;서영호;나운성
    • 한국농림기상학회지
    • /
    • 제17권4호
    • /
    • pp.326-332
    • /
    • 2015
  • 우리나라 밭토양에서 국가고유의 온실가스 배출계수를 개발하기 위하여 2010년부터 2012년까지 봄 배추를 대상으로 재배기간 동안에 $N_2O$를 포집분석한 결과는 다음과 같다. 봄 배추 밭에서의 $N_2O$ 배출량은 정식 후 생육초기인 1개월 정도까지 높게 유지되다가 감소하는 경향을 보였다. 또한 생육초기에 수원지역의 $N_2O$ 배출량이 춘천지역보다 높았는데, 이는 수원의 강수량이 상대적으로 높은데 기인한다고 볼수 있다. 질소비료 시용량이 많을수록 $N_2O$ 배출량이 증가하는 경향을 보였으며, 회귀분석한 결과를 보면 99.8%의 상관성이 보였다. 본 연구에서 3년 동안의 봄 배추 재배기간 중 $N_2O$ 배출량을 분석하여 산정한 국가고유 $N_2O$ 배출계수는 0.0056kg Kg $N_2O-N/kg$ N이였다. 이러한 연구결과는 국가고유 $N_2O$ 배출계수를 등록과 더불어 국가 온실가스 배출량 산정에 적용하여 국가 및 지자체의 온실가스 배출량 감축에도 기여할 것이다.

아디픽산 제조공정으로부터 발생되는 N2O에 대한 배출제어기술 (Emission Control Technologies for N2O from Adipic Acid Production Plants)

  • 김문현
    • 한국환경과학회지
    • /
    • 제20권6호
    • /
    • pp.755-765
    • /
    • 2011
  • Nitrous oxide ($N_2O$) is one of six greenhouse gases listed up in the Kyoto Protocol, and it effects a strong global warming because of its much greater global warming potential (GWP), by 310 times over a 100-year time horizon, than $CO_2$. Although such $N_2O$ emissions from both natural and anthropogenic sources occur, the latter can be controlled using suitable abatement technologies, depending on them, to reduce $N_2O$ below acceptable or feasible levels. This paper has extensively reviewed the anthropogenic $N_2O$ emission sources and their related compositions, and the state-of-the-art non-catalytic and catalytic technologies of the emissions controls available currently to representative, large $N_2O$ emission sources, such as adipic acid production plants. Challengeable approaches to this source are discussed to promote establishment of advanced $N_2O$ emission control technologies.