• Title/Summary/Keyword: $N_{2}$ gas

Search Result 3,455, Processing Time 0.029 seconds

Dry Etch Characteristics of TiN Thin Film for Metal Gate Electrode (Metal 게이트 전극을 위한 TiN 박막의 건식 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Park, Jung-Soo;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.169-172
    • /
    • 2009
  • We investigated the dry-etching mechanism of the TiN thin film using a $Cl_2$/Ar inductively coupled plasma system. To understand the effect of the $Cl_2$/Ar gas mixing ratio, we etched the TiN thin film by varying $Cl_2$/Ar gas mixing ratio. When the gas mixing ratio was 100% $Cl_2$, the highest etch rate was obtained. The chemical reaction on the surface was investigated with X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to examine etched profiles of the TiN thin film.

The Effect of the Gas Ration on the Characteristics of Plasma Nitrided SCM440 Steel (SCM440강의 플라즈마 질화특성에 미치는 가스비율의 영향)

  • 김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.712-720
    • /
    • 1998
  • The effect of H2:N2 gas ratio on the case thickness hardness and nitrides formation in the sur-face of SCM440 machine structural steel have been studied by micro-pulse plasma process. The thickness of compound layer increased with the increase of nitrogen content in the gas com-position. The maximum thickness of compound layer the maximum case depth and the maximum surface hardness were about 15.8${\mu}m$, 400${\mu}m$ and Hv765 respectively in the nitriding condition of 250Pa and 70% nitrogen content at $520^{\circ}C$ for 7hrs. Generally only nitride phases such as ${\'{\gamma}}$($Fe_4N$)$\varepsilon(Fe_2}{_3N}$ phases were detected in compound and diffusion layer by XRD analysis. The amount of $\varepsilon(Fe_2}{_3N}$ phase increased with the increase of nitrogen content. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitrogen content in the gas composition.

  • PDF

Development of an Energy MonItorIng System for Gas Scrubber (반도체 공정장비 Gas Scrubber의 에너지 모니터링 시스템개발)

  • Kim, Sun-Man;Im, Ik-Tea;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2011
  • We have developed a new energy-consuming monitoring system that has made it possible to measure the energy consumption of a gas scrubber, one of semiconductor processing equipments, and installed this system to the gas scrubber under operating at a manufacture site. Using this system, we have measured consumptions of electric power and processing gas consumed at standby to operating mode. In case of the gas scrubber, processing gas flows continuously into it at standby and operating mode. Therefore, if the electric power has been supplied, the processing gas can flows into the device for 24 hours. Moreover, at operating of gas scrubber, the amount of electricity consumption is 5 kWh. At Standby of gas scrubber, it spends 3kwh. It is certain that the energy consumption is greater at operating mode than at standby mode. The carbon emission rates from 24 hour gas scrubber operation are 236 $kgCO_2$/day of $N_2$, 57 $kgCO_2$/day of electric power and 0.001 $kgCO_2$/day of cooling water. Most of carbon is emitted from $N_2$ gas and electric power consumption.

Process Characteristics of SiOx and SiOxNy Films on a Gas Barrier Layer using Facing Target Sputtering (FTS) System (FTS 장치를 이용한 가스 차단막용 SiOx 및 SiOxNy 박막의 공정특성)

  • Son, Jin-Woon;Park, Yong-Jin;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1028-1032
    • /
    • 2009
  • In this study, the influences of silicon-based gas barrier films fabricated by using a facing target sputtering(FTS) system on the gas permeability for flexible displays have been investigated. Under these optimum conditions on the $SiO_x$ film with oxygen concentration($O_2/Ar+O_2$) of 3.3% and the $SiO_xN_y$ film with nitrogen concentration($N_2/Ar+O_2+N_2$) of 30% deposited by the FTS system, it was found that the films were grown about 4 times higher deposition rate than that of the conventional sputtering system and showed high transmittance about 85% in the visible light range. Particularly, the polyethylene naphthalate(PEN) substrates with the $SiO_x$ and/or $SiO_xN_y$ films showed the enhanced properties of decreased water vapor transmission rate (WVTR) over $10^{-1}\;g/m^2{\cdot}day$ compared with the PEN substrate without any gas barrier films, which was due to high packing density in the Si-based films with high plasma density by FTS process and/or the denser chemical structure of Si-N bond in the $SiO_xN_y$ film.

Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET

  • Lee, Jung-Yeon;Park, Bong-Ryeol;Lee, Jae-Gil;Lim, Jongtae;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • In this study, the effects of forming gas post metallization annealing (PMA) on recessed AlGaN/GaN-on-Si MOSHFET were investigated. The device employed an ICPCVD $SiO_2$ film as a gate oxide layer on which a Ni/Au gate was evaporated. The PMA process was carried out at $350^{\circ}C$ in forming gas ambient. It was found that the device instability was improved with significant reduction in interface trap density by forming gas PMA.

A Study on Separation of $N_2-SO_2$ Mixed Gas by Polymer Membranes (고분자막을 이용한 $N_2-SO_2$ 혼합기체의 분리에 관한 연구)

  • 김성준;민병렬;이태희
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.135-143
    • /
    • 1992
  • Separation of $N_2-SO_2$ mixed gas by polymer membranes, SEPA-97(CA), TFC, and FT-30 membrane, was investigated by varying pressure and temperature. The permeability coefficients and the separation factors of mixed gases were measured, and the influence of various factors on the gas permeability characteristics and separation performance were investigated. The range of pressure was 0.1~1.0 MPa, and that of temperature was 283~303 K. The experimental results showed that the permeability coefficients and the separation factors were increased with an increase in pressure, but they were deereased with increasing temperature. Among the examined membranes, FT-30 possessed the best gas-separating characteristics.

  • PDF

A Study on Characteristics of Insulation Breakdown and Surface Discharge by the Mixing Ratio of Dry Air/O2 gas mixtures (Dry Air/O2 혼합가스의 혼합비에 따른 절연파괴 및 연면방전 특성 연구)

  • Seok, Jeong-Hoo;Beak, Jong-Hyun;Lim, Dong-Young;Bae, Sungwoo;Kim, Ki-Chai;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.49-57
    • /
    • 2015
  • This paper presents the discharge characteristics and economic feasibility of a Dry $Air/O_2$ and a $N_2/O_2$ mixture gas in order to review $SF_6$ alternative. From AC discharge experiment in an quasi-uniform field, it was found that the optimal $N_2/O_2$ mixing ratio which breakdown voltage and surface flashover voltage were the highest was 70/30 and that the pressure dependence on the breakdown voltage was higher than that of the surface flashover voltage in the Dry $Air/O_2$ and the $N_2/O_2$ mixture gas. The mixing ratio (70/30) and the tendency of the pressure dependence were described in detail based on physical factors (impact ionization coefficient, electron attachment coefficient, secondary electron emission coefficient) involved in discharge mechanism and a electron source, respectively. In addition, the performance insulation and the economic feasibility of the Dry $Air/O_2$ and the $N_2/O_2$ mixture gas were discussed so that Dry $Air/O_2$ mixture gaswas more suitable than $N_2/O_2$ mixture gas to the $SF_6$ alternative.

Surface Discharge Characteristics of Solid Dielectrics in N2/O2 Mixture Gas for Eco-Friendly Insulation Design (친환경 절연설계를 위한 N2/O2 혼합가스 중 고체유전체 종류에 따른 연면방전특성)

  • Lim, Dong-Young;Park, He-Rie;Choi, Eun-Hyeok;Choi, Sang-Tae;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, we deal with a surface discharge that caused an aggravation of the dielectric strength in the $N_2/O_2$ mixture gas, When composit dielectrics were formed from the use of a solid dielectric. It was found from this study that the surface discharge voltage was deeply involved in the mixture ratio of $O_2$, the electrical property of the solid dielectric, kind of the solid dielectric, an electric field at the triple junction and a medium effect. These results expect basic data that will be used to transmission and distribution power system equipment using the $N_2/O_2$ mixture gas.

Properties and Gas Permeability of PEBAX Composite Membrane Containing GO (GO를 함유한 PEBAX 복합막의 성질과 기체투과도)

  • Lee, Seul Ki;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.233-242
    • /
    • 2018
  • To study gas membrane using GO (graphene oxide), the PEBAX [poly(ether-block-amide)]-GO polymer composite membrane was prepared by adding GO to PEBAX. Through this composite membrane, gas permeation characteristics for $H_2$, $N_2$, $CH_4$, and $CO_2$ were studied. As a result of the gas permeation test, the permeability of $N_2$, $CH_4$, and $CO_2$ to PEBAX-GO composite membranes gradually decreased as the GO content increased. On the other hand, the gas permeability of $H_2$ increased with the increase of GO content, and it was 21.43 barrer at the GO content of 30 wt%, which was about 5 times higher than that of PEBAX membrane. This is because the GO was easier to operate with a fast and selective gas transport channel for $H_2$ than other gases. The increased selectivity ($H_2/N_2$) and selectivity ($H_2/CH_4$) were influenced by the diffusion selectivity by the permeate gas size. The increased selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) were more influenced by the solubility selectivity due to the affinity of $CO_2$ and GO for -COOH.