• Title/Summary/Keyword: $NO_2$gas

Search Result 2,411, Processing Time 0.037 seconds

Ozone Generation and NO Gas Removal Characteristics a Silent-Surface Hybrid Discharge Type Ozonizer (무성-연면 복합방전형 오존발생기의 오존생성 및 NO 가스 제거특성)

  • Song, Hyun-Jig;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.32-38
    • /
    • 2005
  • A hybrid discharge type ozonizer, which is superposed silent and surface discharges, has been designed and manufactured to apply for Nitrogen Oxides(NO) gas removal. The ozonizer consists of three electrodes, and is classified three types of ozonizer by changing applied voltage. Investigation was carried out variance with the flow rate of supplied oxygen gas, discharge power and the sorts of superposed discharge type ozonizer. Moreover, NO(1200[ppm])/$N_2$ gas removal investigation was also conducted to apply for environment improvement field. Two kinds of NO gas removal investigations were conducted. It distinguishes the investigations into NO gas reaction method. According to these studies, maximum removal rate of 100[%] in NO gas was obtained, and 8334[ppm] and 3249[mg/h] of maximum ozone concentration and generation were also obtained respectively.

A study on production of dry oxidant by decomposition of H2O2 on K-Mn/Fe2O3 catalyst and NO oxidation process according to simulated flue gas flow (K-Mn/Fe2O3 촉매 상 H2O2 분해에 의한 건식산화제 생성 및 모사 배가스 유량에 따른 NO 산화공정)

  • Choi, Hee Young;Shin, Woo Jin;Jang, Jung Hee;Han, Gi Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.367-375
    • /
    • 2017
  • In this study, NO oxidation process was studied to increase the NO treatment efficiency of pollutant present in exhaust gas. $H_2O_2$ catalytic cracking was introduced as a method of producing dry oxidizing agents with strong oxidizing power. The $K-Mn/Fe_2O_3$ heterogeneous catalysts applicable to the $H_2O_2$ decomposition process were prepared and their physico-chemical properties were investigated. The prepared dry oxidant was applied to the NO oxidation process to treat the simulated exhaust gas containing NO, NO conversion rates close to 100% were confirmed at various flow rates (5, 10, 20 L/min) of the simulated flue gas.

MEMS-Based Micro Sensor Detecting the Nitrogen Oxide Gases (산화질소 검출용 마이크로 가스센서 제조공정)

  • Kim, Jung-Sik;Yoon, Jin-Ho;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.299-303
    • /
    • 2013
  • In this study, a micro gas sensor for $NO_x$ was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about $2mm{\times}2mm$. Indium oxide as a sensing material for the $NO_x$ gas was synthesized by a sol-gel process. The particle size of synthesized $In_2O_3$ was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance ($R_s=R_{gas}/R_{air}$), occurred at $300^{\circ}C$ with a value of 8.0 at 1 ppm $NO_2$ gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the $NO_2$ gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.225-230
    • /
    • 2019
  • $Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network (SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서)

  • Kim, Yoojong;Bak, So-Young;Lee, Jeongseok;Lee, Se-Hyeong;Woo, Kyoungwan;Lee, Sanghyun;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.

Improvement in Catalytic NOx Reduction by Using Dielectric Barrier Discharge (유전체장벽방전을 이용한 촉매공정의 질소산화물 저감성능 향상)

  • Mok, Young Sun;Nam, Chang-Mo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The ozone produced by a dielectric barrier discharge device was injected into the exhaust gas to oxidize a part of NO to $NO_2$, and then the exhaust gas containing the mixture of NO and $NO_2$ was further treated in a catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added to the exhaust gas. The experiments were primarily concerned with the effect of reaction temperature on the catalytic $NO_x$ reduction at various $NO_2$ contents. The increase in the $NO_2$ content by the ozone injection remarkably improved the performance of the catalytic $NO_x$ reduction, especially at low temperatures.

  • PDF

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

$NO_2$Gas Detection Characteristics of Octa-dodecyloxy Copper-phthalocyanine Langmuir-Blodgett(LB) Films

  • Koo, Ja-Ryong;Kim, Young-Kwan;Kim, Jung-Soo
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.78-80
    • /
    • 1998
  • Metallo-phthalocyanines(MPcs) are very sensitive to toxic molecules such as electron affinitive NO2 gas and also chemically and thermally stable since losts of MPcs have been studied for the potential chemcial gas sensors for $NO_2$ using their electrical conductivity. In this study, thin films of octa-dodecyloxy copper -phthalocyanine were prepared by Langmuir-Blodgett(LB) method and characterized by using UV/Vis absorption spectroscopy, and ellipsometry. It was found that the proper transfer surface pressure for the film deposition was 25mN/m and the limiting area per molecule was $112\AA$/molecule. The film thickness of one layer was $64\AA$. Current-voltage(I-V) characteristics of these films were investigated as a function of film thickness.

  • PDF