Browse > Article
http://dx.doi.org/10.7842/kigas.2019.23.6.8

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx  

Cho, Seo-Hee (Department of Aerospace Engineering, Sunchon National University)
Lee, Kee-Man (School of Mechanical and Aerospace Engineering, Sunchon National University)
Publication Information
Journal of the Korean Institute of Gas / v.23, no.6, 2019 , pp. 8-16 More about this Journal
Abstract
One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.
Keywords
flue gas recirculation(FGR); counterflow flames; nitrogen oxides; low-pollution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A, F., Sarofim, R. C., Flagan, "NOx Control for Stationary Combustion Sources", Prog. Energy. Combust. Sci., 2, 1-25, (1976)   DOI
2 W., Li, Z., Liu, Z., Wang, Y., Xu, J., Wang, "Experimental and theoretical analysis of dffects of $N_2$, $O_2$ and Ar in excess air on combustion and NOx emissions of a turbocharged NG engine", Energy Conversion and Management., 97, 253-264, (2015)   DOI
3 S. C., Li, and F. A., Williams, "NOx Formation in Two-Stage Methane-Air Flames", Combustion and Flame, 118, 399-414, (1999)   DOI
4 Y., He, C., Zou, Y., Song, Y., Liu, C., Zheng, "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)", Energy, 112, 1024-1035, (2016)   DOI
5 S. J., Zhu, Q. G., Lyu, J. G., Zhu, J. R., Li, "NO emissions under pulverized char MILD combustion in $O_2$/$CO_2$ preheated by a circulating fluidized bed: Effect of oxygen-staging gas distribution", Fuel Processing Technology, 182, 104-112, (2018)   DOI
6 H. K., Kim, Y. M., Kim, S. M., Lee, K.Y., Ahn, "NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology", Proceedings of the Combustion Institute, 31, 3377-3384, (2007)   DOI
7 Y., Tu, A., Zhou, M., Xu, W., Yang, K. B., Siah, P., Subbaiah, "NOx reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology", Applied Energy, 220, 962-973, (2018)   DOI
8 Moorman, R. J., and Long, C. H., "Design, Development and testing of a Swirl Type Gas Burner With Fuel Gas Recirculation for NOx Control," ASME 73-PWR-21, 1-9, (1973)
9 J. A., Wunning, J. G., Wunning, "Flameless Oxidation to Reduce Thermal NO-formation", Prog. Energy. Combust. Sci., 23, 81-94, (1997)   DOI
10 J., Baltasar, M. G., Carvalho, P., Coelho, M., Costa, "Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling", Fuel, 76(10), 919-929, (1997)   DOI
11 J. M., BeeR, "Low NOx Burners for Boilers, Furnaces and Gas Turbines; Drive Towards the Lower Bounds of NOx Emissions", Combust. Sci. and Tech., 2, 169-191,(1996)   DOI
12 B., Shi, J., Hu, H., Peng, S., Ishizuka, "Effects of internal flue gas recirculation rate on the NOx emission in a methane/air premixed flame", Combustion and Flame, 188, 199-211, (2018)   DOI
13 A. C. A., Lipardi, P., Versailles, G. M. G., Watson, G., Bourque, J. M., Bergthorson, "Experimental and numerical study on NOx formation in CH4-air mixtures diluted with exhaust gas components", Combustion and Flame, 179, 325-337, (2017)   DOI
14 J. J., Feese, S. R., Turns, "A Study of NOx Reduction by Fuel Injection Recirculation". Master. Dissertation, The Pennsylvania State University, (1996)
15 J., Park, O. B., Kwon, S. W., Kim, C. Y., Lee, S. I., Keel, J. H., Yun, I. G., Lim, "A Study on Flame Structure and NO Emission in FIRand FGR-applied Methane-air Counterflow Diffusion Flames", J. Korean Soc. Combust., 21(1), 38-45, (2016)   DOI
16 Stephen R. Turns, "An Introduction to Combustion Concepts and Applications", McGraw-Hill, third edition, 363-370, (2012)
17 Y., Ju, H., Guo, K., Maruta, F., Liu, "On the extinction limit and flammability limit of nonadiabatic stretched methane-air premixed flames", J. Fluid Mech., 342, 315-334, (1997)   DOI
18 E. S., Cho, S. H., Chung, "Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides", Journal of Mechanical Science and Technology (KSME Int. J.), 19(6), 1358-1365, (2005)   DOI
19 R. J., Kee, J. A., Miller, G. H., Evans, "A Computational Model of The Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames", Proc Combust Inst, 22, 1479-1494, (1988)
20 A. E., Lutz, R. J., Kee, J. F., Grcar, F. M., Rupley, "A Fortran program for computing opposed- flow diffusion flames", Sandia National Laboratories Report, SAND 96-8243, (1997)
21 "Chemical-Kinetic Mechanisms for Combustion Applications", Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, http://combustion. ucsd.edu/, (2014)
22 J., Park, J. S., Kim, J. O., Chung, J. H., Yun, S. I., Keel, "Chemical effects of added $CO_2$ on the extinction characteristics of $H_2$/CO/$CO_2$ syngas diffusion flames", International Journal of Hydrogen Energy, 34, 8756-8762, (2009)   DOI
23 S. W., Jung, J., Park, O. B., Kwon, Y. J., Kim, S. I., Keel, J. H., Yun, I. G., Lim, "Effects of $CO_2$ addition on flame extinction in interacting $H_2$-air and CO-air premixed flames", Fuel, 136, 69-78, (2014)   DOI
24 J. J., Feese, S. R., Turns, "Nitric Oxide Emissions from Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition", Combustion and Flame, 113(1-2), 66-78, (1998)   DOI
25 M. Nishioka, S., Nakagawa, Y., Ishikawa, T., Takeno, "NO Emission Characteristics of Methane-Air Double Flame", Combustion and Flame, 98, 127-138, (1994)   DOI
26 E. S., Cho, S. H., Chung, "Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides", KSME International Journal, 18(12), 2303-2309, (2004)   DOI
27 Maruta, K., Yoshida, M., Guo, H., Ju, Y., and Niioka, T., "A Computational Study of Flame Radiation in PMMA Diffusion Flames Including Fuel Vapor Participation", Combust. Flam., 112, 181-187, (1998)   DOI
28 G. A., Lavoie, J. B., Heywood, J. C., Keck, "Experimental and Thoretical Study of Nitric Oxide Formation in Internal Combustion Engines", Combustion Science and Technology, 1, 313-326, (1970)   DOI
29 C. P., Fenimore, "Formation of Nitric Oxide in Premixed Hydrocarbon Flames", Symposium (International) on Combustion, 13(1), 373-380, (1971)
30 C. K., Westbrook, F L., Dryer "Chemical Kinetic Modeling of Hydrocarbon Combustion", Prog. Energy Combustion. Sci, 10, 1-57, (1984)   DOI
31 J. Kojima, Y. Ikeda, T. Nakajima, "Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames", Proceedings of the Combustion Institute, 28, 1757-1764, (2000)   DOI