• Title/Summary/Keyword: $NO_2$ gas sensor

Search Result 179, Processing Time 0.023 seconds

SnO2 Semiconducting Nanowires Network and Its NO2 Gas Sensor Application (SnO2 반도체 나노선 네트웍 구조를 이용한 NO2 가스센서 소자 구현)

  • Kim, Jeong-Yeon;Kim, Byeong-Guk;Choi, Si-Hyuk;Park, Jae-Gwan;Park, Jae-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.223-227
    • /
    • 2010
  • Recently, one-dimensional semiconducting nanomaterials have attracted considerable interest for their potential as building blocks for fabricating various nanodevices. Among these semiconducting nanomaterials,, $SnO_2$ nanostructures including nanowires, nanorods, nanobelts, and nanotubes were successfully synthesized and their electrochemical properties were evaluated. Although $SnO_2$ nanowires and nanobelts exhibit fascinating gas sensing characteristics, there are still significant difficulties in using them for device applications. The crucial problem is the alignment of the nanowires. Each nanowire should be attached on each die using arduous e-beam or photolithography, which is quite an undesirable process in terms of mass production in the current semiconductor industry. In this study, a simple process for making sensitive $SnO_2$ nanowire-based gas sensors by using a standard semiconducting fabrication process was studied. The nanowires were aligned in-situ during nanowire synthesis by thermal CVD process and a nanowire network structure between the electrodes was obtained. The $SnO_2$ nanowire network was floated upon the Si substrate by separating an Au catalyst between the electrodes. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structure. By varying the nanowire density and the distance between the electrodes, several types of nanowire network were fabricated. The $NO_2$ gas sensitivity was 30~200 when the $NO_2$ concentration was 5~20ppm. The response time was ca. 30~110 sec.

Environmental Monitoring Sub-System for Ubiquitous Terminal Using Metal Oxide Nano-Material Gas Sensor (나노 금속산화물을 이용한 유단말용 환경 모니터링 서브 시스템)

  • Moon, S.E.;Lee, H.Y.;Lee, J.W.;Park, J.;Park, S.J.;Kwak, J.H.;Maeng, S.;Park, K.H;Kim, J.;Udrea, F.;Milne, W.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.63-63
    • /
    • 2008
  • Environmental monitoring sub-system has been developed using gas sensor module, Bluetooth module and PDA phone. The gas sensor module consists of $NO_2or$ CO gas sensor and signal processing chips. Gas sensor is composed of the micro-heater, sensing electrode and sensing material. Metal oxide nano-material was selectively deposited on a substrate with micro-heater and was integrated to the gas sensor module. The change in resistance of the metal oxide nano-material due to exposure of oxidizing or deoxidizing gases is utilized as the principle of this gas sensor operation mechanism. This variation detected in the gas sensor module was transferred to the PDA phone by way of Bluetooth module.

  • PDF

SAW Gas Sensor using WO$_3$Thin Film (WO$_3$박막을 이용한 SAW 가스 센서)

  • 정영우;허두오;이해민;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.187-189
    • /
    • 1995
  • A Surface Acoustic Wave Gas sensor for NO, CO, H$_2$gas detection was designed fabricated, and tested. A delay line device was designed to composite a single mode SAW oscillator which enables to measure a SAW velocity. To reduce the effect of temperature and humidity, dual delay line oscillator circuit was used. And final output was measured by digital frequency counter. NO, CO, H$_2$gas were detected by WO$_3$thin film deposited on the path of the Delay Line.

  • PDF

Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis (수열합성법으로 성장시킨 ZnO 나노 로드기반 TFT 가스 센서 제조 및 특성평가)

  • Jeong, Jun-Kyo;Yun, Ho-Jin;Yang, Seung-Dong;Park, Jeong-Hyun;Kim, Hyo-Jin;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

Ga doped ZnO Thin Films for Gas Sensor Application (Ga이 첨가된 ZnO 박막의 가스센서로의 응용 연구)

  • Hwang, Hyun-Suk;Yeo, Dong-Hun;Kim, Jong-Hee;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.499-502
    • /
    • 2008
  • In this work, Ga-doped ZnO (GZO) thin films for gas sensor application were deposited on low temperature co-fired ceramics (LTCC) substrates, by RF magnetron sputtering method. The LTCC substrate is one of promising materials for this application since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.). The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The structural properties of the fabricated GZO thin film with thickness of 50 nm is analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The film shows good adhesion to the substrate. The GZO gas sensors are tested by gas measurement system and show fast response and recovery characteristics to $NO_x$ gas that is 27.2 and 27.9 sec, recpectively.

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature (NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서)

  • Choi, Myung Sik;Kim, Min Young;Ahn, Jihye;Choi, Seung Joon;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.260-266
    • /
    • 2021
  • Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.

Electrospun Non-Directional Zinc Oxide Nanofibers as Nitrogen Monoxide Gas Sensor (전기방사법에 의해 합성된 무방향성 산화아연 나노섬유의 일산화질소 가스 감지 특성)

  • Kim, Ok-Kil;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.609-614
    • /
    • 2012
  • We report on the NO gas sensing properties of non-directional ZnO nanofibers synthesized using a typical electrospinning technique. These non-directional ZnO nanofibers were electrospun on an $SiO_2$/Si substrate from a solution containing poly vinyl alcohol (PVA) and zinc nitrate hexahydrate dissolved in distilled water. Calcination processing of the ZnO/PVA composite nanofibers resulted in a random network of polycrystalline ZnO nanofibers of 50 nm to 100 nm in diameter. The diameter of the nanofibers was found to depend primarily on the solution viscosity; a proper viscosity was maintained by adding PVA to fabricate uniform ZnO nanofibers. Microstructural measurements using scanning electron microscopy revealed that our synthesized ZnO nanofibers after calcination had coarser surface morphology than those before calcination, indicating that the calcination processing was sufficient to remove organic contents. From the gas sensing response measurements for various NO gas concentrations in dry air at several working temperatures, it was found that gas sensors based on electrospun ZnO nanofibers showed quite good responses, exhibiting a maximum sensitivity to NO gas in dry air at an operating temperature of $200^{\circ}C$. In particular, the non-directional electrospun ZnO nanofiber gas sensors were found to have a good NO gas detection limit of sub-ppm levels in dry air. These results illustrate that non-directional electrospun ZnO nanofibers are promising for use in low-cost, high-performance practical NO gas sensors.

Potentiometric NOx sensors for automotive exhaust using YSZ(yittria stabilized zirconia) electrolyte (YSZ 전해질을 이용한 농담전지식 자동차용 NOx센서)

  • Park, Jin-Su;Park, Kwang-Chol;Park, C.O.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • Two kinds of new NOx sensing mechanism was proposed and examined. One of those was potentiomtric sensor based on the measurement of decomposed oxygen from NO using YSZ porous diffusion barrier and Pd catalytic electrode. The sensor based on decomposed oxygen measurement responded to the range of 300 - 1000 ppm NO in $N_{2}$ environment and the sensitivities were coincident with theoretical values at 700 and $800^{\circ}C$ but the decomposition rate depended on gas flow rate. The other sensor was equilibrium potentiometric type using $Gd_{2}O_{3}$-nitrates solid solution as sensing material. The sensor using $Gd_{2}O_{3}$-nitrates solid solution was suitable for NOxxsensing at $700^{\circ}C$ in 5 % oxygen and the sensitivity was 19.3 mV/decade. However, long term stability of the sensing material at high temperature was not sufficient.