Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.6.382

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration  

Eom, Tae Hoon (Department of Materials Science and Engineering, Seoul National University)
Kim, Taehoon (Department of Materials Science and Engineering, Seoul National University)
Jang, Ho Won (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.6, 2020 , pp. 382-387 More about this Journal
Abstract
Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.
Keywords
Gas sensors; Graphene; Hydrogen sensing; Metal oxide decoration; Noble metal decoration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Wang, L. Zhu, Y. Yang, N. Xu, and G. Yang, The "Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen", J. Phys. Chem. C, Vol. 112, No. 17, pp. 6643-6647, 2008.   DOI
2 P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri, and N. Pinna, "Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide", Angew. Chem. Int. Ed., Vol. 51, No. 44, pp. 11053-11057, 2012.   DOI
3 K. Anand, O. Singh, M. P. Singh, J. Kaur, and R. C. Singh, "Hydrogen sensor based on graphene/ZnO nanocomposite", Sens. Actuators B, Vol. 195, pp. 409-415, 2014.   DOI
4 Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, and J. Li, "Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor", Nanoscale, Vol. 7, No. 22, pp. 10078-10084, 2015.   DOI
5 D. Kathiravan, B.-R. Huang, and A. Saravanan, "Selfassembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors", ACS Appl. Mater. Interfaces, Vol. 9, No. 13, pp. 12604-12072, 2017.
6 S. Y. Park, Y. Kim, T. Kim, T. H. Eom, S. Y. Kim, and H. W. Jang, "Chemoresistive materials for electronic nose:Progress, perspectives, and challenges", InfoMat, Vol. 1, No. 3, pp. 289-316, 2019.   DOI
7 Y. Kim, T. Kim, J. Lee, Y. S. Choi, J. Moon, S. Y. Park, T. H. Lee, H. K. Park, S. A Lee, M. S. Kwon, H.-G. Byun, J.-H. Lee, M.-G. Lee, B. H. Hong,, and H. W. Jang, "Tailored Graphene Micropatterns by Wafer?Scale Direct Transfer for Flexible Chemical Sensor Platform", Adv. Mater., Vol. 32, pp. 2004827(1)-2004827(9), 2020.
8 J. Wang, S. Rathi, B. Singh, I. Lee, H.-I. Joh, and G.-H. Kim, "Alternating current dielectrophoresis optimization of Pt-decorated graphene oxide nanostructures for proficient hydrogen gas sensor", ACS Appl. Mater. Interfaces, Vol. 7, No. 25, pp. 13768-13775, 2015.   DOI
9 G. Hussain, M. Ge, C. Zhao, and D. S. Silvester, "Fast responding hydrogen gas sensors using platinum nanoparticle modified microchannels and ionic liquids", Anal. Chim. Acta, Vol. 1072, pp. 35-45, 2019.   DOI
10 S. Shukla, S. Seal, L. Ludwig, and C. Parish, "Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor", Sens. Actuators B, Vol. 97, No. 2-3, pp. 256-265, 2004.   DOI
11 A. Adamyan, Z. Adamyan, V. Aroutiounian, A. Arakelyan, K. Touryan, and J. Turner, "Sol-gel derived thin-film semiconductor hydrogen gas sensor", Int. J. Hydrog. Energy, Vol. 32, No. 16, pp. 4101-4108, 2007.   DOI
12 Y. Pak, S.-M. Kim, H. Jeong, C. G. Kang, J. S. Park, H. Song, R. Lee, N. Myoung, B. H. Lee, and S. Seo, "Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons", ACS Appl. Mater. Interfaces, Vol. 6, No. 15, pp. 13293-13298, 2014.   DOI
13 Y. K. Kim, S.-H. Hwang, S. M. Jeong, K. Y. Son, and S. K. Lim, "Colorimetric hydrogen gas sensor based on PdO/metal oxides hybrid nanoparticles", Talanta, Vol. 188, pp. 356-364, 2018.   DOI
14 C.-H. Wu, Z. Zhu, S.-Y. Huang, and R.-J. Wu, "Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors", J. Alloys Compd., Vol. 776, pp. 965-973, 2019.   DOI
15 A. Dey, "Semiconductor metal oxide gas sensors: A review", Mat. Sci. Eng. B, Vol. 229, pp. 206-217, 2018.   DOI
16 N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, and L. Lin, "A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides", Microchim. Acta, Vol. 185, No. 4, pp. 213(1)-213(16), 2018.   DOI
17 Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, and J.-H. Liu, "Metal oxide nanostructures and their gas sensing properties: a review", Sensors, Vol. 12, No. 3, pp. 2610-2631, 2012.   DOI
18 Y. H. Kim, J. S. Park, Y.-R. Choi, S. Y. Park, S. Y. Lee, W. Sohn, Y.-S. Shim, J.-H. Lee, C. R. Park, and Y. S. Choi, "Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels", J. Mater. Chem. A, Vol. 5, No. 36, pp. 19116-19125, 2017.   DOI
19 D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: a review", Sens. Actuators B, Vol. 204, pp. 250-272, 2014.   DOI
20 Y. H. Kim, S. J. Kim, Y.-J. Kim, Y.-S. Shim, S. Y. Kim, B. H. Hong, and H. W. Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending", ACS Nano, Vol. 9, No. 10, pp. 10453-10460, 2015.   DOI
21 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature Vol. 457, No. 7230, pp. 706-710, 2009.   DOI
22 Z. Shao, W. Zhu, H. Wang, Q. Yang, S. Yang, X. Liu, and G. Wang, "Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance", J. Phys. Chem. C, Vol. 117, No. 27, pp. 14289-14294, 2013.   DOI
23 H. Zhang, M. Jin, Y. Xiong, B. Lim, and Y. Xia, "Shapecontrolled synthesis of Pd nanocrystals and their catalytic applications", Acc. Chem. Res., Vol. 46, No. 8, pp. 1783-1794, 2013.   DOI
24 X. Yan, P. Zhu, and J. Li, "Self-assembly and application of diphenylalanine-based nanostructures", Chem. Soc. Rev., Vol. 39, No. 6, pp. 1877-1890, 2010.   DOI
25 Y. Sun and H. H. Wang, "High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles", Adv. Mater., Vol. 19, No. 19, pp. 2818-2823, 2007.   DOI
26 S. Ju, J. M. Lee, Y. Jung, E. Lee, W. Lee, and S.-J. Kim, "Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles", Sens. Actuators B, Vol. 146, No. 1, pp. 122-128, 2010.   DOI
27 B. S. Yeo and A. T. Bell, "Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen", J. Am. Chem. Soc., Vol. 133, No. 14, pp. 5587-5593, 2011.   DOI
28 A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor", Nanoscale, Vol. 1, No. 3, pp. 382-386, 2009.   DOI
29 D. H. Shin, J. S. Lee, J. Jun, J. H. An, S. G. Kim, K. H. Cho, and J. Jang, "Flower-like palladium nanoclusters decorated graphene electrodes for ultrasensitive and flexible hydrogen gas sensing", Sci. Rep., Vol. 5, pp. 12294(1)-12294(11), 2015.   DOI
30 X. Yu, Y. Huo, J. Yang, S. Chang, Y. Ma, and W. Huang, "Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol", Appl. Surf. Sci., Vol. 280, pp. 450-455, 2013.   DOI
31 Y. Kim, Y. S. Choi, S. Y. Park, T. Kim, S.-P. Hong, T. H. Lee, C. W. Moon, J.-H. Lee, D. Lee, and B. H. Hong, "Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen", Nanoscale, Vol. 11, No. 6, pp. 2966-2973, 2019.   DOI
32 G. Lu, L. E. Ocola, and J. Chen, "Gas detection using low-temperature reduced graphene oxide sheets", Appl. Phys. Lett., Vol. 94, No. 8, pp. 083111(1)-083111(3), 2009.   DOI
33 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol., Vol. 5, No. 8, pp. 574-578, 2010.   DOI
34 F. Schedin, A. K. Geim, S. V. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, No. 9, pp. 652-655, 2007.   DOI
35 Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. C. Johnson, "Intrinsic response of graphene vapor sensors", Nano Lett., Vol. 9, No. 4, pp. 1472-1475, 2009.   DOI
36 A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, "Highly selective gas sensor arrays based on thermally reduced graphene oxide", Nanoscale, Vol. 5, No. 12, pp. 5426-5434, 2013.   DOI
37 O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, "Hydrogen sensing using titania nanotubes", Sens. Actuators B, Vol. 93, No. 1-3, pp. 338-344, 2003.   DOI
38 G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, "Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements", Thin Solid Films, Vol. 496, No. 1, pp. 42-48, 2006.   DOI