• Title/Summary/Keyword: $NH_3$ TPD

Search Result 78, Processing Time 0.024 seconds

Acid Property and Catalytic Activity on Mordenites Treated by Hydrochloric Acid and Hydrofluoric Acid (염산 및 불산처리 모더나이트의 산특성과 촉매활성)

  • Han, Young-Taek;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1991
  • A series of samples having different $SiO_2/Al_2O_3$ ratio were prepared by treating hydrogen mordenites with boiling hydrochloric acid and with hydrofluoric acid. The acidities of these samples were measured by TPD of $NH_3$ and by pyridine adsorption using IR, and the catalytic activities and selectivities of isomerization were measured for the reaction of ortho-xylene. For the samples treated by boiling hydrochloric acid, the acidities decreased with the increasing $SiO_2/Al_2O_3$ ratio caused by the extraction of framework aluminum. The sample having the $SiO_2/Al_2O_3$ ratio or 22 showed better activity than the others. For the samples treated by hydrofluoric acid, the content of chemically binding fluorine increased with the increasing contact time of hydrofluoric acid solution. The catalytic activities decreased with the hydrofluoric acid treatment due to the decreased acid sites resulted from the extraction of aluminum and silicon as well as the hydroxyl group replacement by the fluoride ion. The slightly increasing catalytic activities, however, came from the newly created acid sites, due to the removal of surface silicon, having enhanced by the inductive effect of binding fluorin with further acid treatment.

  • PDF

The Etherification of 2-Naphthol over Mesoporous Solid Acid Catalysts (메조 세공의 고체산 촉매를 이용한 2-나프톨의 에테르화 반응)

  • Kim, Young Jin;Bhatt, Sharad Durgashanker;Yoon, Songhun;Kim, Hee Young;Lee, Yongtaek;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.279-285
    • /
    • 2008
  • The etherification of 2-naphthol with ethanol has been carried out over various solid acid catalysts. CNS, CNSWS, SCMS, MCF, and SBA-15 with and without sulfonic acid were used in this study as solid acid catalysts. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether were obtained at reaction temperature = $180^{\circ}C$, $LHSV=1h^{-1}$, ethanol/2-naphthol molar ratio = 20 using a fixed-bed down flow reactor. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether over silica group catalysts were higher than them over carbon group catalysts. The conversion of 2-naphthol was 70-90% and the selectivity of 2-naphthyl ethyl ether was more than 90% over silica group solid acid catalysts. It was performed XRD, SEM, TEM, and $NH_3-TPD$ to characterize solid acid catalysts.

Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction (Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구)

  • Park, Ji Hye;Baek, Jeong Hun;Hwang, Ra Hyun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • To investigate the effect of magnesium oxide addition, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, $N_2O$ chemisorption, XRD, $H_2-TPR$ and $NH_3-TPD$ analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $200{\sim}320^{\circ}C$. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of $Cu^+$, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above $240^{\circ}C$ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at $240^{\circ}C$, GHSV $28,000h^{-1}$.

V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx (NH3-SCR용 나노분산 TiO2 담체상에 제조된 V2O5WO3/TiO2 촉매: TiO2 분산입도와 NOx 최대 분해온도와의 상관성)

  • Min Chae, Seo;Se-Min, Ban;Jae Gu, Heo;Yong Sik, Chu;Kyung-Seok, Moon;Dae-Sung, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.496-507
    • /
    • 2022
  • For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

Selective Synthesis of Butene-1 Through Double-bond Migration of Butene-2 over η-Alumina Catalysts

  • Jeon, Jong-Ki;Kim, Do Heui;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2669-2672
    • /
    • 2014
  • Double bond migration of butene-2 to butene-1 over ${\eta}$-alumina was investigated. The effects of calcination temperature on catalytic properties were analyzed by applying BET surface area, XRD, $NH_3$-TPD, and FT-IR of adsorbed pyridine techniques. The highest activity of the ${\eta}$-alumina catalyst calcined at $600^{\circ}C$ could be attributed not only to the highest amount of weak and medium strength acid sites, but also to the highest ratio of medium to weak strength Lewis acid sites.

Honeycomb Monolith Coated with Mo(VI)/ZrO2 as a Versatile Catalyst System for Liquid Phase Transesterification

  • Thimmaraju, N.;Pratap, S.R.;Senthilkumar, M.;Mohamed Shamshuddin, S.Z.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.563-570
    • /
    • 2012
  • Solid acid Mo(VI)/$ZrO_2$ with 2-10% Mo(VI) was coated on honeycomb monoliths by impregnation method. These catalytic materials were characterized by BET, $NH_3$-TPD/n-butylamine back titration, PXRD and SEM techniques. Phenyl salicylate (Salol) was synthesized via transesterification of methyl salicylate and phenol over these catalytic materials. An excellent yield (91.0%) of salol was obtained under specific reaction conditions. The effect of poisoning of acid sites of the catalytic material by adsorbing different bases and its effect on total surface acidity, powder XRD phases and catalytic activity was studied. A triangular correlation between the surface acidity, powder XRD phases and catalytic activity of Mo(VI)/$ZrO_2$ was observed. The thermally regenerated catalytic material was reused repeatedly with a consistent high yield of salol.

SnO2/SiO2 Nanocomposite Catalyzed One-Pot Synthesis of 2-Arylbenzothiazole Derivatives

  • Yelwande, Ajeet A.;Navgire, Madhukar E.;Tayde, Deepak T.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1856-1860
    • /
    • 2012
  • $SnO_2/SiO_2$ nanocomposite has been synthesized by using sol-gel method. Prepared catalytic materials has been well characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmer-Teller (BET) surface area, and temperature-programmed desorption of ammonia ($NH_3$-TPD). $SnO_2/SiO_2$ nanocomposite catalyzed synthesis of 2-arylbenzothiazoles by the cyclocondensation of 2-aminothiophenol and aromatic aldehydes under reflux condition in 1:1 EtOH:$H_2O$. After completion of the reaction, catalyst can be recovered efficiently and reused with consistent activity.

Hydrogenation Characteristics of Aromatics in Residue Oil of Naphtha Cracking on Pt/Pd Impregnated Mesoporous Molecular Sieve (메조포러스 분자체에 담지된 Pt/Pd 촉매상에서 납사분해 잔사유의 방향족 화합물 수소화 특성)

  • Choi, Jong Hwa;Jeong, Soon Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.675-682
    • /
    • 2005
  • Al containing mesoporous molecular sieve (Al-MMS) was synthesized by hydrolysis of $H_2SiF_6$ and $Al(NO_3)_3{\cdot}9H_2O$. The material obtained was characterized by XRD, $N_2$-physisorption. The specific surface area was $981m^2/g$, and the average pore size was uniformity $39{\AA}$. It was confirmed that the acidity of Al-MMS was milder than that of zeolite Y based on the results of $NH_3$-TPD. Active materials, Pt and Pd, were loaded on Al-MMS in order to examine the feasibility of using Al-MMS as a catalyst support in the hydrogenation of aromatic compounds included in the residue oil of a naphtha cracker. The hydrogenation activity of PtPd/Al-MMS has been studied by following the kinetics of the hydrogenation of naphthalene, and by comparing the kinetic parameters obtained with Pt and Pd catalysts supported on the other mesoporous material support and commercial conventional support materials. PtPd/Al-MMS catalyst shows the highest activity of hydrogenation and sulfur resistance. The high activity of PtPd/Al-MMS was confirmed again in the hydrogenation of PGO (pyrolized gas oil), which is residue oil obtained from a naphtha cracker. Therefore, PtPd/Al-MMS can be applied to the hydrogenation of aromatic compounds included in the residue oil of a commercial naphtha cracker commericially.

High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System (상온 방전 플라즈마-광촉매(Mn-Ti-MCM-41) 복합 시스템에 놓인 고농도 톨루엔의 분해성능)

  • Ban, Ji-Young;Son, Yeon-Hee;Lee, Sung-Chul;Kang, Misook;Choung, Suk-Jin;Sung, Joon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.413-421
    • /
    • 2005
  • This study focused on the decomposition of toluene in a plasma-photocatalytic hybrid system. Hexagonally packed meso-structured Mn-titanosilicates (Mn-Ti-MCM-41), as the photocatalysts, have been prepared by the hydrothermal method. The physical properties of the photocatalysts were characterized using XRD, XPS, TEM, BET/ICP, and $NH_3$/Toluene-TPD. Experiments were carried out at the applied voltage of 9.0 kV and at room temperature of $20^{\circ}C$. In the plasma only system, the activity of the toluene decomposition was higher than that in the photocatalytic system. However, the amount of by-products, such as phenol, $C_2{\sim}C_4$ alkene, was also increased in the plasma only system. However, the by-products decreased remarkably in a plasma-photocatalytic hybrid system. When Mn5mol%-Ti-MCM-41 was used as a photocatalyst in a plasma-photocatalytic hybrid system, the $CO_2$ selectivity in products was increased dramatically compared to other catalysts. It was confirmed that a plasma-photocatalytic hybrid system was better for toluene decomposition compared to photocatalytic and plasma only systems.