DOI QR코드

DOI QR Code

Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction

Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구

  • Park, Ji Hye (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Baek, Jeong Hun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Hwang, Ra Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 박지혜 (충남대학교 에너지과학기술대학원) ;
  • 백정훈 (충남대학교 에너지과학기술대학원) ;
  • 황라현 (충남대학교 에너지과학기술대학원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2017.05.19
  • Accepted : 2017.07.04
  • Published : 2017.12.31

Abstract

To investigate the effect of magnesium oxide addition, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, $N_2O$ chemisorption, XRD, $H_2-TPR$ and $NH_3-TPD$ analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $200{\sim}320^{\circ}C$. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of $Cu^+$, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above $240^{\circ}C$ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at $240^{\circ}C$, GHSV $28,000h^{-1}$.

저온 수성가스전이반응에서 $Cu/ZnO/MgO/Al_2O_3$ (CZMA) 촉매의 마그네슘의 영향을 조사하기 위하여 Cu/Zn/Mg/Al의 비율을 45/45/5/5 mol%로 공침법을 사용하여 제조하였다. 제조된 촉매들은 BET, $N_2O$ 화학흡착, XRD, $H_2-TPR$ and $NH_3-TPD$를 사용하여 분석되었다. 촉매 활성 테스트는 GHSV $28,000h^{-1}$와 온도 범위 $200{\sim}320^{\circ}C$에서 수행되었다. 동일한 조건에서 마그네슘이 첨가된 촉매(CZMA 400)는 가장 낮은 환원 온도를 나타내며 활성종인 $Cu^+$가 안정적으로 존재하고 또한 많은 약산점을 보유하였다. 또한 마그네슘이 첨가된 촉매(CZMA)는 마그네슘이 첨가되지 않은 촉매(CZA)와 비교하였을 때 240 이상의 높은 온도에서 촉매 활성이 증가하였다. CZMA 400 촉매는 최적의 촉매로서 $240^{\circ}C$, GHSV $28,000h^{-1}$에서 75 h 동안 활성의 저하없이 평균 CO 전환율 77.59%를 나타내었다.

Keywords

References

  1. Mikkelsen, M., Jorgensen, M., and Krebs, F. C., "The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide," Energy Environ. Sci., 3(1), 43-81 (2010). https://doi.org/10.1039/B912904A
  2. Im, H. B., et al., "Effect of Support Geometry on Catalytic Activity of Pt/$CeO_2$ Nanorods in Water Gas Shift Reaction," Trans Korean Hydrog. New Energy Soc., 25(6), 577-585 (2014). https://doi.org/10.7316/KHNES.2014.25.6.577
  3. Rhodes, C., Hutchings, G., and Ward, A., "Water-gas Shift Reaction: Finding the Mechanistic Boundary," Catal. Today, 23(1), 43-58 (1995). https://doi.org/10.1016/0920-5861(94)00135-O
  4. Byun C. K., et al., "Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction," Clean Technol., 21(3), 200-206 (2015). https://doi.org/10.7464/ksct.2015.21.3.200
  5. Smith, R., Loganathan, M., and Shantha, M. S., "A Review of the Water Gas Shift Reaction Kinetics," Int. J. Chem. Eng. Appl., 8(1), (2010).
  6. Baek, J. H., et al., "Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/$Al_2O_3$ Catalyst for Water Gas Shift Reaction," Trans Korean Hydrog. New Energy Soc., 26(5), 423-430 (2015). https://doi.org/10.7316/KHNES.2015.26.5.423
  7. Stone, F. S., and Waller, D., "Cu-ZnO and Cu-ZnO/$Al_2O_3$ Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts," Top. Catal., 22(3-4), 305-318 (2003). https://doi.org/10.1023/A:1023592407825
  8. Saito, M., and Murata, K., "Development of High Performance Cu/ZnO-based Catalysts for Methanol Synthesis and the Water-Gas Shift Reaction," Catal. Surv. Asia, 8(4), 285-294 (2004). https://doi.org/10.1007/s10563-004-9119-y
  9. Gokhale, A. A., Dumesic, J. A., and Mavrikakis, M., "On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper," J. Am. Chem. Soc., 130(4), 1402-1414 (2008). https://doi.org/10.1021/ja0768237
  10. Li, Y., Fu, Q., and Flytzani-Stephanopoulos, M., "Lowtemperature Water-Gas Shift Reaction over Cu-and Ni-loaded Cerium Oxide Catalysts," Appl. Catal., B., 27(3), 179-191 (2000). https://doi.org/10.1016/S0926-3373(00)00147-8
  11. Shishido, T., et al., "Water-gas Shift Reaction over Cu/ZnO and Cu/ZnO/$Al_2O_3$ Catalysts Prepared by Homogeneous Precipitation," Appl. Catal., A., 303(1), 62-71 (2006). https://doi.org/10.1016/j.apcata.2006.01.031
  12. Wang, X., Gorte, R. J., and Wagner, J., "Deactivation Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction," J. Catal., 212(2), 225-230 (2002). https://doi.org/10.1006/jcat.2002.3789
  13. Twigg, M. V., and Spencer, M. S., "Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions," Appl. Catal., A., 12(1), 161-174 (2001).
  14. Kumar, P., and Idem, R., "A Comparative Study of Copper-Promoted Water-Gas-Shift (WGS) Catalysts," Energy Fuels, 21(2), 522-529 (2007). https://doi.org/10.1021/ef060389x
  15. Nishida, K., et al., "Effective MgO Surface Doping of Cu/Zn/Al Oxides as Water-Gas Shift Catalysts," Appl. Clay Sci., 44(3), 211-217 (2009). https://doi.org/10.1016/j.clay.2009.02.005
  16. Baek, J.-I., et al., "Effect of MgO Addition on the Physical Properties and Reactivity of the Spray-Dried Oxygen Carriers Prepared with a High Content of NiO and $Al_2O_3$," Fuel, 144, 317-326 (2015). https://doi.org/10.1016/j.fuel.2014.11.035
  17. Shishido, T., et al., "Cu/Zn-based Catalysts Improved by Adding Magnesium for Water-Gas Shift Reaction," J. Mol. Catal. A: Chem., 253(1), 270-278 (2006). https://doi.org/10.1016/j.molcata.2006.03.049
  18. Lindstrom, B., Pettersson, L. J., and Menon, P. G., "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on $\gamma$-alumina for Methanol Reforming for Fuel Cell Vehicles," Appl. Catal., A., 234(1), 111-125 (2002). https://doi.org/10.1016/S0926-860X(02)00202-8
  19. Lima, A., et al., "Composition Effects on the Activity of Cu-ZnO-$Al_2O_3$ Based Catalysts for the Water Gas Shift Reaction: A Statistical Approach," Appl. Catal., A., 171(1), 31-43 (1998). https://doi.org/10.1016/S0926-860X(98)00072-6
  20. Figueiredo, R. T., Andrade, H. M. C., and Fierro, J. L., "Influence of the Preparation Methods and Redox Properties of Cu/ZnO/$Al_2O_3$ Catalysts for the Water Gas Shift Reaction," J. Mol. Catal. A: Chem., 318(1), 15-20 (2010). https://doi.org/10.1016/j.molcata.2009.10.028
  21. Petallidou, K. C., et al., "Water-Gas Shift Reaction on Pt/$Ce_{1-x}Ti_xO_{2-{\delta}}$: The Effect of Ce/Ti Ratio," J. Phys. Chem. C 117(48), 25467-25477 (2013). https://doi.org/10.1021/jp406059h
  22. Kumar, P., Srivastava, V. C., and Mishra, I. M., "Dimethyl Carbonate Synthesis from Propylene Carbonate with Methanol using Cu-Zn-Al Catalyst," Energy Fuels, 29(4), 2664-2675(2015). https://doi.org/10.1021/ef502856z
  23. Jeong, J. W., et al., "Effects of Cu-ZnO Content on Reaction Rate for Direct Synthesis of DME from Syngas with Bifunctional Cu-ZnO/${\gamma}-Al_2O_3$ Catalyst," Catal. Lett., 143(7), 666-672 (2013). https://doi.org/10.1007/s10562-013-1022-6