Browse > Article

High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System  

Ban, Ji-Young (College of Environment and Applied Chemistry, Kyung Hee University)
Son, Yeon-Hee (College of Environment and Applied Chemistry, Kyung Hee University)
Lee, Sung-Chul (College of Environment and Applied Chemistry, Kyung Hee University)
Kang, Misook (Industrial Liaison Research Institute, Kyung Hee University)
Choung, Suk-Jin (College of Environment and Applied Chemistry, Kyung Hee University)
Sung, Joon-Yong (Yonsei Center for Clean Technology, Yonsei University)
Publication Information
Applied Chemistry for Engineering / v.16, no.3, 2005 , pp. 413-421 More about this Journal
Abstract
This study focused on the decomposition of toluene in a plasma-photocatalytic hybrid system. Hexagonally packed meso-structured Mn-titanosilicates (Mn-Ti-MCM-41), as the photocatalysts, have been prepared by the hydrothermal method. The physical properties of the photocatalysts were characterized using XRD, XPS, TEM, BET/ICP, and $NH_3$/Toluene-TPD. Experiments were carried out at the applied voltage of 9.0 kV and at room temperature of $20^{\circ}C$. In the plasma only system, the activity of the toluene decomposition was higher than that in the photocatalytic system. However, the amount of by-products, such as phenol, $C_2{\sim}C_4$ alkene, was also increased in the plasma only system. However, the by-products decreased remarkably in a plasma-photocatalytic hybrid system. When Mn5mol%-Ti-MCM-41 was used as a photocatalyst in a plasma-photocatalytic hybrid system, the $CO_2$ selectivity in products was increased dramatically compared to other catalysts. It was confirmed that a plasma-photocatalytic hybrid system was better for toluene decomposition compared to photocatalytic and plasma only systems.
Keywords
toluene decomposition; Mn-Ti-MCM-41; plasma-photocatalytic hybrid system; $CO_2$ selectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. S. Choi, Y. H. Song, S. J. Kim, and B. U. Kim, HWAHAK KONGHAK, 38, 423 (2000)
2 B. Y. Lee, S. H. Park, S. C. Lee, M. S. Kang, and S. J. Choung, Catal. Today, 93, 769 (2004)   DOI   ScienceOn
3 U. Roland, F. Holzer, and F.-D. Kopinke, Catal. Today, 73, 315 (2002)   DOI   ScienceOn
4 R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach (Eds.), Low Temperature Plasma Physics: Fundamental Aspects and Applications, WILEY-VCH, 331 (2003)
5 T. G. Kang, J. H. Kim, and G. Seo, HWAHAK KONGHAK, 36, 364 (1998)
6 Y. S. Won, D. H. Han, T. Stuchinskaya, W. S. Park, and H. S. Lee, Radiat. Phy. Chem., 63, 165 (2002)
7 S. S. Kim, H. Lee, B. K. Na, and H. K. Song, Catal. Today, 89, 193 (2004)   DOI
8 D. Kumar, S. Varma, and N. M. Gupta, Catal. Today, 93, 541 (2004)   DOI   ScienceOn
9 J. M. Kim, J. H. Kwak, S. A. Jun, and R. Ryoo, J. Phys. Chem., 99, 16742 (1995)   DOI   ScienceOn
10 K.-P. Francke, H. Miessner, and R. Rudolph, Catal. Today, 59, 411 (2000)   DOI   ScienceOn
11 C. H. Ao and S. C. Lee, J. Photochern. Photobiol. A-Chem., 161, 131 (2004)
12 V. Demidiouk, S. I. Moon, and J. O. Chae, Chem. Commun., 4, 51 (2003)
13 Y. S. Won and M. A. Deshusses, J. Korean. Soc. Atmos. Environ., 19, 101 (2003)
14 T. K. Poddar, S. Maiumdar, and K K Sirkar, J. Membr. Sci., 120, 221 (1996)   DOI   ScienceOn
15 K. Urashima and J. S. Chang, IEEE Trans. Dielectr. Electr. Insul., 7, 602 (2000)   DOI   ScienceOn
16 Y. S. Mok, H. W. Lee, Y. J. Hyun, S. W. Ham, M. H. Cho, and I. S. Nam, HWAHAK KONGHAK, 40, 121 (2002)
17 A. Monnier, F. Scheth, Q. Huo, D. Kumar, D. Dargolese, R. S. Maxwell, G. D. Stucky, P. Petroff, A. Firouzi, M. Janicke, and B. F. Chmelka, Science, 261, 1299 (1993)   DOI
18 P. Schacht, L. Norena-Franco, J. Ancheyta, S. Ramirez, I. Hernandez-Perez, and L. A. Garcia, Catal. Today, 98, 115 (2004)   DOI
19 L. Davydov, E. P. Reddy, P. France, and P. G. Smirniotis, J. Catal., 203, 157 (2001)   DOI   ScienceOn
20 S. Futamura, H. Einaga, H. Kabashima, and Y. H. Lee, Catal. Today, 89, 89 (2004)   DOI