Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.11.496

V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx  

Min Chae, Seo (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
Se-Min, Ban (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
Jae Gu, Heo (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
Yong Sik, Chu (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
Kyung-Seok, Moon (Department of Materials Engineering, Gyeongsang National University)
Dae-Sung, Kim (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Korean Journal of Materials Research / v.32, no.11, 2022 , pp. 496-507 More about this Journal
Abstract
For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.
Keywords
bead-milling; high-temperature shift; in situ FT-IR; nano dispersed $TiO_2$; $NH_3$-SCR DeNOx;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 K. B. Nam, Y. S. Kang and S. C. Hong, Appl. Chem. Eng., 26, 666 (2015).
2 H. G. Im, M. J. Lee, W. G. Kim, S. J. Kim, B. R. Jeong, B. R. Ye, H. S. Lee and H. D. Kim, Nanomaterials, 12, 2329 (2022).
3 J. J. Schreifels, S. Wang and J. Hao, Front. Energy, 6, 98 (2012).
4 M. G. Jung and S. C. Hong, Clean Technol., 27, 315 (2021).
5 X. Zhang, X. Zhang, X. Yang, Y. Chen, X. Hu and X. Wu, Chem. Eng. Sci., 238, 116588 (2021).
6 S. B. Kim, G. R. Choi, J. H. Shin and S. C. Hong, Appl. Chem. Eng., 32, 35 (2021).
7 S. M. Lee, S. S. Kim and S. C. Hong, Chem. Eng. Sci., 79, 177 (2012).
8 B. R. Ye, M. J. Lee, S. Y. Chun, G. Y. Lee, J. W. Kim, B. R. Jeong, T. W. Kim and H. D. Kim, Appl. Surf. Sci., 560, 149934 (2021).
9 M. Kobayashi and K. Miyoshi, Appl. Catal., B, 72, 253 (2007).
10 M. A. Centeno, P. Malet, I. Carrizosa and J. A. Odriozola, J. Phys. Chem. B, 104, 3310 (2000).
11 L. Chen, J. Li and M. Ge, J. Phys. Chem. C, 113, 21177 (2009).
12 I. Giakoumelou, C. Fountzoula, C. Kordulis and S. Boghosian, J. Catal., 239, 1 (2006).
13 J. G. Heo, M. Ullah, M. P. Chun, Y. S. Chu, S. G. Seo, M. C. Seo, Y. S. Choe and D.-S. Kim, Inorg. Chem. Commun., 137, 109191 (2022).
14 D. W. Kwon, K. H. Park and S. C. Hong, Appl. Catal., A, 451, 227 (2013).
15 S. G. Lee, S. S. Park, S. S. Hong, J. M. Park, S. H. Lee, D.-S. Kim and G. D. Lee, Appl. Chem. Eng., 22, 685 (2011).
16 C. Wang, Z.-X. Deng, G. Zhang, S. Fan and Y. Li, Powder Technol., 125, 39 (2002).
17 B. Abebe, H. C. A. Murthy and E. Amare, J. Encapsulation Adsorpt. Sci., 8, 225 (2018).
18 H. H. Kim, H. Park and K. N. Kim, Korean J. Mater. Res., 20, 252 (2010).
19 Y. Ren, Z. Ma and P. G. Bruce, J. Mater. Chem., 22, 15121 (2012).
20 X. Cui, J. Zhou, Z. Ye, H. Chen, L. Li, M. Ruan and J. Shi, J. Catal., 270, 310 (2010).
21 D. W. Kwon, S. M. Lee and S. C. Hong, Appl. Catal., A, 505, 557 (2015).
22 I. H. Song, S. H. Youn, H. H. Lee, S. G. Lee, S. J. Cho and D. H. Kim, Appl. Catal., B, 210, 421 (2017).
23 S. Liu, H. Wang, Y. Wei and R. Zhang, Mol. Catal., 485, 110822 (2020).
24 Y. Yang, J. Liu, F. Liu, Z. Wang, J. Ding and H. Huang, Chem. Eng. J., 361, 578 (2018).
25 L. C. Cordoba, M. F. Montemor and T. Coradin, Corros. Sci., 104, 152 (2016).
26 Y. Liu, J. Xu, H. Li, S. Cai, H. Hu, C. Fang, L. Shi and D. Zhang, J. Mater. Chem. A., 3, 11543 (2015).
27 Y. C. Wang, X. Liu, P. Ning, Q. L. Zhang, J. H. Zhang, L. S. Xu, X. S. Tang and M. Z. Wang, J. Fuel. Chem. Technol., 42, 1357 (2014).
28 H. P. Ha and H.L. Choi, Korean J. Mater. Res., 16, 323 (2006).
29 M. H. Kim, Korean Chem. Eng. Res., 51, 163 (2013).