• Title/Summary/Keyword: $Mn_xFe_2O_4$ powders

Search Result 11, Processing Time 0.021 seconds

Crystallographic and Magnetic Properties of MnxFe3-xO4 Powders

  • Kwon, Woo Hyun;Lee, Jae-Gwang;Choi, Won Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.26-29
    • /
    • 2013
  • $Mn_xFe_{3-x}O_4$ powders have been fabricated by using sol-gel methods; their crystallographic and magnetic properties were investigated by using X-ray diffraction, scanning electron microscopy, M$\ddot{o}$ssbauer spectroscopy, and vibrating sample magnetometer. The $Mn_xFe_{3-x}O_4$ ferrite powders annealed at $500^{\circ}C$ had a single spinel structure regardless of the $Mn^{2+}$-doping amount and their lattice constants became larger as the $Mn^{2+}$ concentration was increased. Their Mossbauer spectra measured at room temperature were fitted with 2 Zeeman sextets due to the tetrahedral and octahedral sites of Fe ions, which made them ferrimagnetic. The magnetic behavior of $Mn_xFe_{3-x}O_4$ powders showed that the $Mn^{2+}$-doping amount made their saturation magnetization increase, but there were no severe effects on their coercivities. The saturation magnetization of the $Mn_xFe_{3-x}O_4$ powder varied from 38 emu/g to 70.0 emu/g and their minimum coercivity was 111.1 Oe.

Synthesis and Characterization of Nanosized MnxFe2O4 Powders by Glycothermal Process

  • Bae, Dong-Sik;Kim, Eun-Jung;Lee, Hae-Won;Han, Kyong-Sop
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.903-906
    • /
    • 2002
  • Nanosized $Mn_xFe_2O_4$ powders were prepared in ethylene glycol solution under mild temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The average size and distribution of the synthesized $Mn_xFe_2O_4$ powders was about 20 nm and broad, respectively. The phase of synthesized particles was crystalline reacted at 200${\circ}C$ for 6h. The magnetic properties of the synthesized $Mn_xFe_2O_4$ powders were about 35-60 (emu/g) with superparamagnetic character.

CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ (활성화된(Fe1-xMnx)3O4-δ과 (Fe1-xCox)3O4-δ의 이산화탄소 분해 특성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2013
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Synthesis of Ultra Eine MnxZn1-xFe2O4(x = 0.69~0.74) Powder and Its Magnetic Properties (초미립 MnxZn1-xFe2O4(x = 0.69~0.74)분말의 제조 및 자기적 성질)

  • Kwak, Jae-Eun;Lee, Wan-Jae
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.449-454
    • /
    • 2002
  • $MnxZn_{1-x}Fe_2O_4$ (x=0.69~0.74) powders synthesized by the thermal decomposition of organic acid salts. The obtained powders were uniform in composition and ultra-fine particle with about 400 nm. The amount of spinel phase of these powders was about 50% in X-ray diffraction patterns. The calcination of powder was carried out at $900^{\circ}C$ for 2 hours in air. After the powders were calcined. the mean size of powder was about 500 nm and the amount of spinel phase was increased over about 65%. The maximum amount of spinel phase was about 75% in the specimen of X=0.72. The magnetic properties of calcined $Mn_{0.72}Zn_{0.28}Fe_2O_4$ powders were the best among the different among the different compositions.

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

Magnetic Properties of Multiferroic h-HoMnO3 (Multiferroic h-HoMnO3의 자기적 성질 연구)

  • Kim, Sung-Baek;Kum, Bok-Yeon;Kim, Chul-Sung;An, Sung-Yong;Park, N.Hur, S.;Cheong, S.W.;Jang, Kwang-Hyun;Park, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • Multiferroic $HoMnO_3$ single crystal was prepared using 4-point focused floating zone furnace, and polycrystalline $HoMn_{1-x}\;^57Fe_xO_3$ (x=0.00, 0.01, 0.02, 0.05) powders have been prepared by solid state reaction. Their magnetic and crystallographic properties are studied using MPMS, PPMS, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structure found to be a hexagonal and a magnetic easy-axis is (110) direction. As the external applied magnetic field increases, temperature of the dielectric constant anomaly is decreased. $HoMn_{0.95}\;^{57}Fe_{0.05}O_3$ shows huge quadrupole splitting value from the $M\ddot{o}ssbauer$ spectra.

The Effect of Manganese Substituted M-type Hexagonal Ba-ferrite

  • Lee, In-Kyu;Sur, Jung-Chul;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.93-96
    • /
    • 2009
  • The Mn-substituted M-type Ba-ferrite ($BaFe_{12-x}Mn_xO_{19}$; x = 0, 2, 4, 6) powders were prepared by the HTTD (High Temperature Thermal Decomposition) method. The effect of $Mn^{3+}$ Jahn-Teller ions on the magnetic properties has been studied by x-ray diffraction, vibrating sample magnetometry, and $M{\ddot{o}}ssbauer$ spectroscopy. With increasing Mn substitution, the lattice parameter $a_0$ increases while $c_0$ decreases. The magnetocrystalline anisotropy constants ($K_1$) were determined as 2.9, 2.2, 1.8, and, $1.3{\times}10^6\;erg/cm^3$ for x = 0, 2, 4, and 6, respectively, by the LAS method. We have studied the change of cation distribution by $M{\ddot{o}}ssbauer$ spectroscopy which is closely related to $K_1$.

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film

  • Kwon, Woo-Hyun;Lee, Jae-Gwang;Lee, Young-Bae;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.27-30
    • /
    • 2011
  • Nano-sized manganese ferrite powders and films, $MnFe_2O_4$, were fabricated by the sol-gel method, and the effects of annealing temperature on the crystallographic and magnetic properties were studied by using X-ray diffractometry, field emission scanning electron microscopy, M$\"{o}$ssbauer spectroscopy, and vibrating sample magnetometry. X-ray diffraction spectroscopy of powder samples annealed above 523 K indicated the presence of spinel structure, and the film samples annealed above 773 K also had spinel structure. The particle size increased with the annealing temperature. For the powder samples, the Mossbauer spectra annealed above 573 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of $Fe^{3+}$ ions. Using the M$\"{o}$ssbauer subspectrum area ratio the cation distribution could be written as ($Mn_{0.52}Fe_{0.48}$) $[Mn_{0.48}Fe_{1.52}]$ $O_4$. However the spectrum annealed at 523 K only showed as a doublet due to a superparamagnetic phase. As the annealing temperature was increased, the saturation magnetization and the corecivity of the powder samples increased, as did the coercivity of film samples.