• Title/Summary/Keyword: $M{\ddot{o}}bius$ function

Search Result 8, Processing Time 0.028 seconds

TWO MEROMORPHIC FUNCTIONS SHARING FOUR PAIRS OF SMALL FUNCTIONS

  • Nguyen, Van An;Si, Duc Quang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1159-1171
    • /
    • 2017
  • The purpose of this paper is twofold. The first is to show that two meromorphic functions f and g must be linked by a quasi-$M{\ddot{o}}bius$ transformation if they share a pair of small functions regardless of multiplicity and share other three pairs of small functions with multiplicities truncated to level 4. We also show a quasi-$M{\ddot{o}}bius$ transformation between two meromorphic functions if they share four pairs of small functions with multiplicities truncated by 4, where all zeros with multiplicities at least k > 865 are omitted. Moreover the explicit $M{\ddot{o}}bius$-transformation between such f and g is given. Our results are improvement of some recent results.

GENERALIZATIONS OF NUMBER-THEORETIC SUMS

  • Kanasri, Narakorn Rompurk;Pornsurat, Patchara;Tongron, Yanapat
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1105-1115
    • /
    • 2019
  • For positive integers n and k, let $S_k(n)$ and $S^{\prime}_k(n)$ be the sums of the elements in the finite sets {$x^k:1{\leq}x{\leq}n$, (x, n) = 1} and {$x^k:1{\leq}x{\leq}n/2$, (x, n) = 1}respectively. The formulae for both $S_k(n)$ and $S^{\prime}_k(n)$ are established. The explicit formulae when k = 1, 2, 3 are also given.

DOMAIN OF EULER-TOTIENT MATRIX OPERATOR IN THE SPACE 𝓛p

  • Demiriz, Serkan;Erdem, Sezer
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.361-378
    • /
    • 2020
  • The most apparent aspect of the present study is to introduce a new sequence space 𝚽(𝓛p) derived by double Euler-Totient matrix operator. We examine its topological and algebraic properties and give an inclusion relation. In addition to those, the α-, β(bp)- and γ-duals of the space 𝚽(𝓛p) are determined and finally, some 4-dimensional matrix mapping classes related to this space are characterized.

THE MINIMAL POLYNOMIAL OF cos(2π/n)

  • Gurtas, Yusuf Z.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.667-682
    • /
    • 2016
  • In this article we show a recursive method to compute the coefficients of the minimal polynomial of cos($2{\pi}/n$) explicitly for $n{\geq}3$. The recursion is not on n but on the coefficient index. Namely, for a given n, we show how to compute ei of the minimal polynomial ${\sum_{i=0}^{d}}(-1)^ie_ix^{d-i}$ for $i{\geq}2$ with initial data $e_0=1$, $e_1={\mu}(n)/2$, where ${\mu}(n)$ is the $M{\ddot{o}}bius$ function.