TWO MEROMORPHIC FUNCTIONS SHARING FOUR PAIRS OF SMALL FUNCTIONS

Van An Nguyen and Duc Quang Si

Abstract

The purpose of this paper is twofold. The first is to show that two meromorphic functions f and g must be linked by a quasiMöbius transformation if they share a pair of small functions regardless of multiplicity and share other three pairs of small functions with multiplicities truncated to level 4. We also show a quasi-Möbius transformation between two meromorphic functions if they share four pairs of small functions with multiplicities truncated by 4 , where all zeros with multiplicities at least $k>865$ are omitted. Moreover the explicit Möbiustransformation between such f and g is given. Our results are improvement of some recent results.

1. Introduction

For a divisor ν on \mathbb{C}, we define its counting function by

$$
N(r, \nu)=\int_{1}^{r} \frac{n(t)}{t} d t \quad(1<r<\infty), \text { where } n(t)=\sum_{|z| \leq t} \nu(z) .
$$

For two positive integers k, M (maybe $M=\infty$), we set

$$
\nu_{\leq k}^{[M]}(z)= \begin{cases}\min \{M, \nu(z)\} & \text { if } \nu(z) \leq k \\ 0 & \text { for otherwise }\end{cases}
$$

and write $N_{\leq k}^{[M]}(r, \nu)$ for $N\left(r, \nu_{\leq k}^{[M]}\right)$. We will omit character ${ }^{[M]}$ (resp. $\leq k$) if $M=+\infty$ (resp. $k=+\infty$). Similarly, we define $N_{=k}^{[M]}(r, \nu)$ and $N_{>k}^{[M]}(r, \nu)$.

For a discrete set $S \subset \mathbb{C}$, we consider it as a reduced divisor and denote by $N(r, S)$ its counting function.

Let f be a nonzero holomorphic function on \mathbb{C}. For each $z_{0} \in \mathbb{C}$, expanding f as $f(z)=\sum_{i=0}^{\infty} b_{i}\left(z-z_{0}\right)^{i}$ around z_{0}, then we define $\nu_{f}^{0}\left(z_{0}\right):=\min \left\{i: b_{i} \neq 0\right\}$.

Let φ be a non-constant meromorphic function on \mathbb{C}. Then there are two holomorphic functions φ_{1}, φ_{2} without common zeros such that $\varphi=\frac{\varphi_{1}}{\varphi_{2}}$. We

Received March 19, 2016; Revised October 4, 2016; Accepted March 10, 2017.
2010 Mathematics Subject Classification. Primary 32H30, 32A22; Secondary 30D35.
Key words and phrases. meromorphic function, small function, Möbius transformation.
define $\nu_{\varphi}^{0}:=\nu_{\varphi_{1}}^{0}$ and $\nu_{\varphi}^{\infty}:=\nu_{\varphi_{2}}^{0}$. The proximity function of φ is defined by:

$$
m(r, \varphi):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|\varphi\left(r e^{i \theta}\right)\right| d \theta \quad(r>1)
$$

here $\log ^{+} x=\max \{1, \log x\}$ for $x \in(0, \infty)$. The Nevanlinna characteristic function of φ is defined by

$$
T(r, \varphi):=m(r, \varphi)+N\left(r, \nu_{\varphi}^{\infty}\right)
$$

We will denote by $S(r, \varphi)$ a quantitive equal to $o(T(r, \varphi))$ for all $r \in(1, \infty)$ outside a finite Borel measure set.

Let f, a be two meromorphic functions on \mathbb{C}. The function a is said to be small (with respect to f) if and only if $T(r, a)=S(r, f)$. We denote by \mathcal{R}_{f} the field of all small (with respect to f) functions on \mathbb{C}.

Let f and g be two meromorphic functions on \mathbb{C}. Let (a, b) be a pair of small (with respect to f and g) meromorphic functions on \mathbb{C} and let n be a positive integer or $+\infty$.
Definition 1.1. We say that f and g share (a, b) weakly with multiplicities truncated to level n, or share $(a, b) C M_{n}^{*}$ in another word, if

$$
\min \left\{n, \nu_{f-a}^{0}(z)\right\}=\min \left\{n, \nu_{g-b}^{0}(z)\right\}
$$

for all $z \in \mathbb{C}$ outside a discrete set of counting function equal to $S(r, f)+S(r, g)$.
We will say that f and g share $a I M^{*}$ if $n=1$ and say that f and g share $a C M^{*}$ if $n=\infty$ and write $C M^{*}$ for $C M_{+\infty}^{*}$.

The function f is said to be a quasi-Möbius transformation of g if there exist small (with respect to g) functions $\alpha_{i}(1 \leq i \leq 4)$ with $\alpha_{1} \alpha_{4}-\alpha_{2} \alpha_{3} \not \equiv 0$ such that $f=\frac{\alpha_{1} g+\alpha_{2}}{\alpha_{3} g+\alpha_{4}}$. If all functions $\alpha_{i}(1 \leq i \leq 4)$ are constants, then we say that the map f is a Möbius transformation of g. An interesting question arises here: "Are there any quasi-Möbius transformation between f and g if they share some pairs of small functions $I M^{*}$ or $C M^{*}$?".

This problem has been studied by many authors, such as T. Czubiak-G. Gundersen [2], P. Li-C. C. Yang [3], P. Li-Y. Zhang [4], S. D. Quang-L. N. Quynh [7, 8], H. Z. Cao-T. B. Cao [1], L. Zhang-L. Yan [11] and others. We state here the recent result of $\mathrm{P} . \mathrm{Li}$ and Y. Zhang, which is one of the best results available at present.

Theorem A (P. Li - Y. Zhang [4]). Let f and g be non-constant meromorphic functions and $a_{i}, b_{i}(i=1,2,3,4)\left(a_{i} \neq a_{j}, b_{i} \neq b_{j}, i \neq j\right)$ be small functions (with respect to f and g). If f and g share three pairs $\left(a_{i}, b_{i}\right),(i=1,2,3) C M^{*}$, and share the fourth pair $\left(a_{4}, b_{4}\right) I M^{*}$, then f is a quasi-Möbius transformation of g.

In this paper, we will improve the above result to the following.
Theorem 1.2. Let f and g be non-constant meromorphic functions and a_{i}, b_{i} $(i=1,2,3,4)\left(a_{i} \neq a_{j}, b_{i} \neq b_{j}, i \neq j\right)$ be small functions (with respect to f and
$g)$. If f and g share the pair $\left(a_{1}, b_{1}\right) I M^{*}$ and share three pairs $\left(a_{i}, b_{i}\right), \quad(i=$ $2,3,4) C M_{4}^{*}$, then f is a quasi-Möbius transformation of g. Moreover there is a permutation $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ of $(1,2,3,4)$ such that
$\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{3}}-b_{i_{2}}}{b_{i_{3}}-b_{i_{1}}}$ or $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{4}}-b_{i_{2}}}{b_{i_{4}}-b_{i_{1}}}$.
In the next theorem, we will consider the case where all zeros of functions $f-a_{i}$ with multiplicities at least $k>865$ do not need to be counted. We prove the following.

Theorem 1.3. Let f and g be non-constant meromorphic functions and a_{i}, b_{i} $(i=1,2,3,4)\left(a_{i} \neq a_{j}, b_{i} \neq b_{j}, i \neq j\right)$ be small functions (with respect to f and g). Assume that

$$
\min \left\{\nu_{f-a_{i}, \leq k}^{0}(z), 4\right\}=\min \left\{\nu_{g-b_{i}, \leq k}^{0}(z), 4\right\} \quad(1 \leq i \leq 4)
$$

for all z outside a discrete set S of counting function equal to $S(r, f)+S(r, g)$. If $k>865$, then there is a permutation $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ of $(1,2,3,4)$ such that $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{3}}-b_{i_{2}}}{b_{i_{3}}-b_{i_{1}}}$ or $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{4}}-b_{i_{2}}}{b_{i_{4}}-b_{i_{1}}}$.
2. Some lemmas and auxiliary results from Nevanlinna theory

Theorem 2.1 ([10], Corollary 1). Let f be a non-constant meromorphic function on \mathbb{C}. Let $a_{1}, \ldots, a_{q}(q \geq 3)$ be q distinct small (with respect to f) meromorphic functions on \mathbb{C}. Then, for each $\epsilon>0$, the following holds

$$
(q-2-\epsilon) T(r, f) \leq \sum_{i=1}^{q} N^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+S(r, f)
$$

Theorem 2.2 ([9], Corollary 1). Let f be a non-constant meromorphic function on \mathbb{C}. Let $a_{1}, \ldots, a_{q}(q \geq 3)$ be q distinct small (with respect to f) meromorphic functions on \mathbb{C}. Then the following holds

$$
\| \frac{q}{3} T(r, f) \leq \sum_{i=1}^{q} N^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+o(T(r, f)) .
$$

Lemma 2.3 ([3], Lemma 7). Let f_{1} and f_{2} be two non-constant meromorphic functions satisfying

$$
N^{[1]}\left(r, \nu_{f_{i}}^{0}\right)+N^{[1]}\left(r, \nu_{f_{i}}^{\infty}\right)=S\left(r, f_{1}\right)+S\left(r, f_{2}\right)(i=1,2) .
$$

If $\left(f_{1}^{s} f_{2}^{t}-1\right)$ is not identically zero for all integers s and $t(|s|+|t|>0)$, then for any positive number ϵ, we have

$$
N_{0}\left(r, 1 ; f_{1}, f_{2}\right) \leq \epsilon\left(T\left(r, f_{1}\right)+T\left(r, f_{2}\right)\right)
$$

where $N_{0}\left(r, 1 ; f_{1}, f_{2}\right)$ denotes the reduced counting function of f_{1} and f_{2} related to the common 1-points.

Lemma 2.4. Let f be a nonconstant meromorphic function and a be a small function (with respect to f). Then for each positive integer k (k may be $+\infty$) we have

$$
N^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right) \leq \frac{k}{k+1} N^{[1]}\left(r, \nu_{f-a_{i}, \leq k}^{0}\right)+\frac{1}{k+1} T(r, f)+S(r, f)
$$

Proof. We have

$$
\begin{aligned}
N^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right) & =N^{[1]}\left(r, \nu_{f-a_{i}, \leq k}^{0}\right)+N^{[1]}\left(r, \nu_{f-a_{i},>k}^{0}\right) \\
& \leq\left(1-\frac{1}{k+1}\right) N^{[1]}\left(r, \nu_{f-a_{i}, \leq k}^{0}\right)+\frac{1}{k+1} N\left(r, \nu_{f-a_{i}}^{0}\right) \\
& \leq \frac{k}{k+1} N^{[1]}\left(r, \nu_{f-a_{i}, \leq k}^{0}\right)+\frac{1}{k+1} T(r, f)+S(r, f) .
\end{aligned}
$$

The lemma is proved.
Let $\left\{H_{i}\right\}_{i=1}^{q}(q \geq N+2)$ be a set of q hyperplanes in $\mathbb{P}^{N}(\mathbb{C})$. We say that $\left\{H_{i}\right\}_{i=1}^{q}$ are in general position if for any $1 \leq i_{1}<\cdots<i_{N+1} \leq q$ we have $\bigcap_{j=1}^{N+1} H_{i_{j}}=\emptyset$.
Theorem $2.5\left([5]\right.$, Theorem 3.1). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ be a linearly holomorphic mapping. Let $\left\{H_{i}\right\}_{i=1}^{q}(q \geq N+2)$ be a set of q hyperplanes in $\mathbb{P}^{N}(\mathbb{C})$ in general position. Then

$$
(q-N-1) T(r, f) \leq \sum_{i=1}^{q} N^{[N]}\left(r, f^{*} H_{i}\right)+S(r, f)
$$

where $f^{*} H_{i}$ denotes the pull back divisor of H_{i} by f.

3. Proof of the main theorems

Lemma 3.1. Let f and g be two meromorphic functions on \mathbb{C}. Let $\left\{a_{i}\right\}_{i=1}^{3}$ and $\left\{b_{i}\right\}_{i=1}^{3}$ be two sets of small (with respect to f) meromorphic functions on \mathbb{C} with $a_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$ for all $1 \leq i<j \leq 3$. Assume that

$$
\min \left\{\nu_{f-a_{i}, \leq k}^{0}(z), 1\right\}=\min \left\{\nu_{g-b_{i}, \leq k}^{0}(z), 1\right\} \quad(1 \leq i \leq 3)
$$

for all z outside a discrete subset S of counting function equal to $S(r, f)$. If $k \geq 3$, then $\| T(r, f)=O(T(r, g))$ and $\| T(r, g)=O(T(r, f))$. In particular, $S(r, f)=S(r, g)$.
Proof. By the second main theorem (Theorem 2.2), we have

$$
\begin{aligned}
T(r, f) & \leq \sum_{i=1}^{3} N^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+S(r, f) \\
& \leq \frac{k}{k+1} \sum_{i=1}^{3} N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+\frac{3}{k+1} T(r, f)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k}{k+1} \sum_{i=1}^{3}\left(N_{\leq k}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)+N\left(r, \nu_{S}\right)\right)+\frac{3}{k+1} T(r, f)+S(r, f) \\
& \leq \frac{3 k}{k+1} T(r, g)+\frac{3}{k+1} T(r, f)+S(r, f)+S(r, g)
\end{aligned}
$$

This implies that $\| T(r, f)=O(T(r, g))$. Similarly, we have $\| T(r, g)=$ $O(T(r, f))$. The lemma is proved.
Lemma 3.2. Let f and g be non-constant meromorphic functions and a_{i}, b_{i} $(i=1,2,3,4)\left(a_{i} \neq a_{j}, b_{i} \neq b_{j}, i \neq j\right)$ be small functions (with respect to f and g) such that

$$
\min \left\{\nu_{f-a_{i}, \leq k}^{0}(z), 1\right\}=\min \left\{\nu_{g-b_{i}, \leq k}^{0}(z), 1\right\} \quad(1 \leq i \leq 4)
$$

for all z outside a discrete subset S of counting function equal to $S(r, f)+$ $S(r, g)$. Assume that f is a quasi-Möbius transformation of g. If $k \geq 3$, then there is a permutation $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ of $(1,2,3,4)$ such that
$\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{3}}-b_{i_{2}}}{b_{i_{3}}-b_{i_{1}}}$ or $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{4}}-b_{i_{2}}}{b_{i_{4}}-b_{i_{1}}}$.
Proof. By Lemma 3.1 we have $S(r, f)=S(r, g)$. Suppose that there is only one index $i_{0} \in\{1,2,3,4\}$ such that $N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i_{0}}}^{0}\right) \neq s(r, f)$. Then by Theorem 2.1, we see that

$$
\begin{align*}
(2-\epsilon) T(r, f) & \leq N^{[1]}\left(r, \nu_{f-a_{i_{0}}}^{0}\right)+\sum_{\substack{1 \leq i \leq 4 \\
i \neq i_{0}}} N^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+S(r, f) \\
& \leq T(r, f)+\frac{k}{k+1} \sum_{\substack{1 \leq i \leq 4 \\
i \neq i_{0}}} N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+\frac{3}{k+1} T(r, f)+S(r, f) \tag{3.3}\\
& \leq\left(1+\frac{3}{k+1}\right) T(r, f)+S(r, f), \forall \epsilon>0
\end{align*}
$$

It implies that $2 \leq 1+\frac{3}{k+1}$, i.e., $k \leq 2$. This is a contradiction.
Therefore, there are at least two indices i_{1}, i_{2} in $\{1,2,3,4\}$ so that

$$
\begin{equation*}
N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i_{j}}}^{0}\right)=N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i_{j}}}^{0}\right)+S(r, f) \neq S(r, f)(1 \leq j \leq 2) . \tag{3.4}
\end{equation*}
$$

Denote by i_{3}, i_{4} the remaining indices, i.e., $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4\}$. We set

$$
\begin{aligned}
& F=\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}, \quad G=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{3}}-b_{i_{2}}}{b_{i_{3}}-b_{i_{1}}}, \\
& A=\frac{a_{i_{4}}-a_{i_{1}}}{a_{i_{4}}-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}, \quad B=\frac{b_{i_{4}}-b_{i_{1}}}{b_{i_{4}}-b_{i_{2}}} \cdot \frac{b_{i_{3}}-b_{i_{2}}}{b_{i_{3}}-b_{i_{1}}} .
\end{aligned}
$$

Then we easily have the following assertions:

- $T(r, F)=T(r, f)+S(r, f), T(r, G)=T(r, g)+S(r, f)$,
- $T(r, A)=T(r, B)+S(r, f)=S(r, f)$,
- $\min \left\{\nu_{F-a, \leq k}^{0}(z), 1\right\}=\min \left\{\nu_{G-b, \leq k}^{0}(z), 1\right\}, \quad(a, b) \in\{(0,0),(1,1)$, $(\infty, \infty),(A, B)\}$ and for all z outside a discrete set of counting function equal to $S(r, f)$.
Since f and g are quasi-Möbius transformations of each other, then so are F and G. Hence, there exist four small functions (with respect to f) $\alpha, \beta, \gamma, \lambda$ with $\alpha \lambda-\beta \gamma \neq 0$ such that

$$
G=\frac{\alpha F+\beta}{\gamma F+\lambda}
$$

By the assumption, we have $0=\frac{\beta(z)}{\lambda(z)}$ for all $z \in \operatorname{Supp}\left(\nu_{f-a_{i_{1}}, \leq k}^{0}\right)$ outside a discrete set of counting function equal to $S(r, f)$. This implies that $\frac{\beta}{\lambda} \equiv 0$ i.e., $\beta \equiv 0$. Similarly, we have $\frac{\gamma(z)}{\alpha(z)}=0$ for all $z \in \operatorname{Supp}\left(\nu_{f-a_{i_{2}}, \leq k}^{0}\right)$ outside a discrete set of counting function equal to $S(r, f)$, and hence $\frac{\gamma}{\alpha} \equiv 0$, i.e., $\gamma \equiv 0$. Therefore, we obtain $G=\frac{\alpha}{\lambda} F$.

We now suppose that $\frac{\alpha}{\lambda} \notin\left\{1, B, \frac{B}{A}\right\}$. It is easy to see that:

- $N_{\leq k}^{[1]}\left(r, \nu_{G-1}^{0}\right) \leq N^{[1]}\left(r, \nu_{\frac{\alpha}{\gamma}-1}^{0}\right)+S(r, f)=S(r, f)$,
- $N_{\leq k}^{[1]}\left(r, \nu_{G-B}^{0}\right) \leq N^{[1]}\left(r, \nu_{\frac{\alpha}{\gamma}-\frac{B}{A}}^{0}\right)+S(r, f)=S(r, f)$,
- $N_{\leq k}^{[1]}\left(r, \nu_{G-\frac{\alpha}{\gamma}}^{0}\right)=N_{\leq k}^{[1]}\left(r, \nu_{F-1}^{0}\right)+S(r, f) \leq N^{[1]}\left(r, \nu_{\frac{\alpha}{\gamma}-1}^{0}\right)+S(r, f)=$ $S(r, f)$.
Similarly to (3.3), we have

$$
(2-\epsilon) T(r, G) \leq\left(1+\frac{3}{k+1}\right) T(r, G)+S(r, G), \forall \epsilon>0
$$

This implies that $k \leq 2$. It is a contradiction.
Then $\frac{\alpha}{\lambda} \in\left\{1, B, \frac{B}{A}\right\}$. We have the following three cases:
Case 1. $\frac{\alpha}{\lambda} \equiv 1$. Then we have $G=F$, i.e., $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{3}}-b_{i_{2}}}{b_{i_{3}}-b_{i_{1}}}$.
This implies the desired conclusion of the lemma.
Case 2. $\frac{\alpha}{\lambda} \equiv \frac{B}{A}$. Then we have $G=\frac{B}{A} F$, i.e., $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{4}-a_{i_{2}}}^{a_{i_{4}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{4}}-b_{i_{2}}}{b_{i_{4}}-b_{i_{1}}} .}{\text {. }}$
After changing indices i_{3} and i_{4}, we get the desired conclusion of the lemma.
Case 3. $\frac{\alpha}{\lambda} \equiv B$. Then we have $G=B F$, i.e., $\frac{f-a_{i_{1}}}{f-a_{i_{2}}} \cdot \frac{a_{i_{3}}-a_{i_{2}}}{a_{i_{3}}-a_{i_{1}}}=\frac{g-b_{i_{1}}}{g-b_{i_{2}}} \cdot \frac{b_{i_{4}}-b_{i_{2}}}{b_{i_{4}}-b_{i_{1}}}$. This implies the desired conclusion of the lemma.

Therefore, the above three cases complete the proof of the lemma.
Proposition 3.5. Let F and G be non-constant meromorphic functions and $A_{i}, B_{i}(i=1,2,3)\left(A_{i} \neq A_{j}, B_{i} \neq B_{j}, i \neq j\right)$ be small functions (with respect to F and $G)$. Assume that F is not a quasi-Möbius transformation of G. Then for every positive integer n we have the following inequality

$$
N(r, \nu) \leq N^{[1]}\left(r,\left|\nu_{F-A_{1}}^{0}-\nu_{G-B_{1}}^{0}\right|\right)+N^{[1]}\left(r,\left|\nu_{F-A_{2}}^{0}-\nu_{G-B_{2}}^{0}\right|\right)+S(r)
$$

where $S(r)=o(T(r, F)+T(r, G))$ outside a finite Borel measure set of $[1,+\infty)$ and ν is the divisor defined by $\nu(z)=\max \left\{0, \min \left\{\nu_{F-A_{3}}^{0}(z), \nu_{G-B_{3}}^{0}(z)\right\}-1\right\}$.

Proof. By considering meromorphic functions $\frac{F-A_{1}}{F-A_{2}} \cdot \frac{A_{3}-A_{2}}{A_{3}-A_{1}}$ and $\frac{G-B_{1}}{G-B_{2}} \cdot \frac{B_{3}-B_{2}}{B_{3}-B_{1}}$ instead of f and g, we may assume that $A_{1}=B_{1}=0, A_{2}=B_{2}=\infty$ and $A_{3}=B_{3}=1$.

Since F is not a quasi-Möbius transformation of G, we have

$$
H:=\frac{F^{\prime}}{F}-\frac{G^{\prime}}{G}=\frac{(F / G)^{\prime}}{(F / G)} \not \equiv 0 .
$$

By the lemma on logarithmic derivatives, it follows that

$$
m(r, H) \leq m\left(r, \frac{F^{\prime}}{F}\right)+m\left(r, \frac{G^{\prime}}{G}\right)=S(r)
$$

We also see that H has only simple poles and if z is a pole of H, then it must be either $\nu_{F}^{0}(z) \neq \nu_{G}^{0}(z)$ or $\nu_{F}^{\infty}(z) \neq \nu_{G}^{\infty}(z)$. Then it follows that

$$
N\left(r, \nu_{H}^{\infty}\right) \leq N^{[1]}\left(r,\left|\nu_{F}^{0}-\nu_{G}^{0}\right|\right)+N^{[1]}\left(r,\left|\nu_{F}^{\infty}-\nu_{G}^{\infty}\right|\right) .
$$

On the other hand, if z is a common zero of $(F-1)$ and $(G-1)$, then z will be a zero of $H=\left(\frac{F-G}{G}\right)^{\prime} /\left(\frac{F}{G}\right)$ with multiplicity at least $\left(\min \left\{\nu_{F-1}^{0}(z), \nu_{G-1}^{0}(z)\right\}-1\right)$. This yields that

$$
N\left(r, \nu_{H}^{0}\right) \geq N(r, \nu)
$$

Thus

$$
\begin{aligned}
N(r, \nu) & \leq N\left(r, \nu_{H}^{0}\right) \leq T(r, H)=m(r, H)+N\left(r, \nu_{H}^{\infty}\right) \\
& \leq N^{[1]}\left(r,\left|\nu_{F}^{0}-\nu_{G}^{0}\right|\right)+N^{[1]}\left(r,\left|\nu_{F}^{\infty}-\nu_{G}^{\infty}\right|\right) .
\end{aligned}
$$

The proposition is proved.
Proof of Theorem 1.2. Suppose that f is not a quasi-Möbius transformation of g. By Lemma 3.1, we have $S(r, f)=S(r, g)$. For each $1 \leq i \leq 4$, we define a divisor ν_{i} by setting

$$
\nu_{i}(z)=\max \left\{0, \min \left\{\nu_{f-a_{i}}^{0}(z), \nu_{g-a_{i}}^{0}(z)\right\}-1\right\} .
$$

By assumptions of the theorem and by Lemma 3.5, for a permutation (i, j, s) of $(2,3,4)$ we have following estimates:

$$
\begin{aligned}
& N_{=2}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+2 N_{=3}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+3 N_{>3}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right) \\
\leq & N\left(r, \nu_{i}\right)+S(r, f) \\
\leq & N^{[1]}\left(r,\left|\nu_{f-a_{j}}^{0}-\nu_{g-b_{j}}^{0}\right|\right)+N^{[1]}\left(r,\left|\nu_{f-a_{s}}^{0}-\nu_{g-b_{s}}^{0}\right|\right)+S(r, f) \\
\leq & N_{>3}^{[1]}\left(r, \nu_{f-a_{j}}^{0}\right)+N_{>3}^{[1]}\left(r, \nu_{f-a_{s}}^{0}\right)+S(r, f) .
\end{aligned}
$$

From these inequalities, we easily obtain that

$$
\begin{aligned}
N_{=2}^{[1]}\left(r, \nu_{f, a_{2}}^{0}\right) & =N_{=3}^{[1]}\left(r, \nu_{f, a_{3}}^{0}\right)+S(r, f) \\
& =N_{>3}^{[1]}\left(r, \nu_{f, a_{4}}^{0}\right)+S(r, f)=S(r, f), i=2,3,4 .
\end{aligned}
$$

This yields that

$$
N_{>1}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)=S(r, f)(2 \leq i \leq 4) .
$$

Similarly, we also have

$$
N_{>1}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)=S(r, f)(2 \leq i \leq 4) .
$$

We set $f_{1}=\frac{f-a_{2}}{f-a_{3}} \frac{g-a_{3}}{g-a_{2}}$ and $f_{2}=\frac{f-a_{2}}{f-a_{4}} \frac{g-a_{4}}{g-a_{2}}$. Then it is easy to see that

$$
N^{[1]}\left(r, \nu_{f_{1}}^{0}\right)+N^{[1]}\left(r, \nu_{f_{1}}^{\infty}\right) \leq N_{>1}^{[1]}\left(r, \nu_{f-a_{2}}^{0}\right)+N_{>1}^{[1]}\left(r, \nu_{f-a_{3}}^{0}\right)=S(r, f) .
$$

This means the sets of multiple zeros of $f-a_{i}$ and $g-a_{i}$ are of counting functions equal to $S(r, f)$. Therefore, for $i=2,3,4$, we have

$$
\nu_{f-a_{i}}^{0}(z)=\nu_{g-a_{i}}^{0}(z) \in\{0,1\}
$$

for all z outside a discrete set of counting function equal to $S(r, f)$. Hence, f and g share pair $\left(a_{i}, b_{i}\right)$ weakly with counting multiplicities for $i=2,3,4$. By Theorem A, we have that f is a quasi-Möbius transformation of g. This is a contradiction.

Therefore, the supposition is untrue. Hence f is a quasi-Möbius transformation of g. With the help of Lemma 3.2, we have the conclusion of the theorem.

Proof of Theorem 1.3. Suppose that f is not a quasi-Möbius transformation of g. By Lemma 3.1, we have $S(r, f)=S(r, g)$.

For each $1 \leq i \leq 4$, we define a divisor ν_{i} and μ_{i} by setting

$$
\begin{aligned}
\nu_{i}(z) & =\max \left\{0, \min \left\{\nu_{f-a_{i}}^{0}(z), \nu_{g-a_{i}}^{0}(z)\right\}-1\right\}, \\
\mu_{i}(z) & =\min \left\{1,\left|\nu_{f-a_{i}}^{0}(z)-\nu_{g-a_{i}}^{0}(z)\right|\right\}
\end{aligned}
$$

Take three indices i, j, t in $\{1,2,3,4\}$. By Lemma 3.5 and by the assumptions of the theorem, we easily have the following

$$
\begin{aligned}
3 N^{[1]}\left(r, \mu_{i}\right) & \leq 3\left(N_{>3}^{[1]}\left(r, \nu_{f-a_{i}}, \leq k\right)+N_{>k}^{[1]}\left(r, \nu_{f-a_{i}}\right)+N_{>k}^{[1]}\left(r, \nu_{g-b_{i}}\right)\right) \\
& \leq N\left(r, \nu_{i}\right)+3\left(N_{>k}^{[1]}\left(r, \nu_{f-a_{i}}\right)+N_{>k}^{[1]}\left(r, \nu_{g-b_{i}}\right)\right)+S(r, f) \\
& \leq 3\left(N_{>k}^{[1]}\left(r, \nu_{f-a_{i}}\right)+N_{>k}^{[1]}\left(r, \nu_{g-b_{i}}\right)\right)+N\left(r, \mu_{j}\right)+N\left(r, \mu_{t}\right)+S(r, f) .
\end{aligned}
$$

Summing-up both sides of the above inequality over all subsets $\{i, j, t\}$ of $\{1,2,3,4\}$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{4} N\left(r, \mu_{i}\right) \leq \sum_{i=1}^{4} 3\left(N_{>k}^{[1]}\left(r, \nu_{f-a_{i}}\right)+N_{>k}^{[1]}\left(r, \nu_{g-b_{i}}\right)\right)+S(r, f) \tag{3.6}
\end{equation*}
$$

We set:

- $c_{1}=\frac{a_{3}-a_{2}}{a_{2}-a_{1}}, c_{2}=\frac{a_{3}-a_{1}}{a_{2}-a_{1}}, c_{1}^{\prime}=\frac{b_{3}-b_{2}}{b_{2}-b_{1}}, c_{2}^{\prime}=\frac{b_{3}-b_{1}}{b_{2}-b_{1}}$,
- $F_{1}=c_{1}\left(f-a_{1}\right), F_{2}=c_{2}\left(f-a_{2}\right), G_{1}=c_{1}^{\prime}\left(g-b_{1}\right), G_{2}=c_{2}^{\prime}\left(g-b_{2}\right)$,
- $h_{1}=\frac{F_{1}}{G_{1}}, h_{2}=\frac{F_{2}}{G_{2}}, h_{3}=\frac{F_{1}-F_{2}}{G_{1}-G_{2}}=\frac{b_{2}-b_{1}}{a_{2}-a_{1}} \cdot \frac{f-a_{3}}{g-b_{3}}$,
- $\alpha=\frac{c_{1}\left(a_{4}-a_{1}\right)}{c_{2}\left(a_{4}-a_{2}\right)}, \beta=\frac{c_{1}^{\prime}\left(b_{4}-b_{1}\right)}{c_{2}^{\prime}\left(b_{4}-b_{2}\right)}$,
- $h_{4}=\frac{F_{1}-\alpha F_{2}}{G_{1}-\beta G_{2}}=\frac{c_{1}\left(a_{1}-a_{2}\right)\left(f-a_{4}\right) /\left(a_{4}-a_{2}\right)}{c_{1}^{\prime}\left(b_{1}-b_{2}\right)\left(g-b_{4}\right) /\left(b_{4}-b_{2}\right)}=\frac{\left(a_{3}-a_{2}\right)\left(b_{4}-b_{2}\right)}{\left(a_{3}^{\prime}-a_{2}^{\prime}\right)\left(b_{4}^{\prime}-b_{2}^{\prime}\right)} \cdot \frac{f-a_{4}}{g-b_{4}}$.

It is easy to see that $c_{1} \neq c_{2}, c_{1}^{\prime} \neq c_{2}^{\prime}, \alpha \neq 1, \beta \neq 1$ and all $c_{i}, c_{i}^{\prime}(1 \leq i \leq 2)$ are small with respect to f and

$$
\begin{equation*}
N^{[1]}\left(r, \nu_{h_{i}}^{0}\right)+N^{[1]}\left(r, \nu_{h_{i}}^{\infty}\right)=N^{[1]}\left(r, \mu_{i}\right)+S(r, f)(1 \leq i \leq 4) . \tag{3.7}
\end{equation*}
$$

From the definition of functions $F_{i}, G_{i}(1 \leq i \leq 2)$, we have the following equations system:

$$
\left\{\begin{aligned}
F_{1}-h_{1} G_{1} & =0 \\
F_{2}-h_{2} G_{2} & =0 \\
F_{1}-F_{2}-h_{3} G_{1}+h_{3} G_{2} & =0 \\
F_{1}-\alpha F_{2}-h_{4} G_{1}+h_{4} \beta G_{2} & =0
\end{aligned}\right.
$$

This implies that

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & -h_{1} & 0 \\
0 & 1 & 0 & -h_{2} \\
1 & -1 & -h_{3} & h_{3} \\
1 & -\alpha & -h_{4} & h_{4} \beta
\end{array}\right)=0 .
$$

Then

$$
\begin{equation*}
(1-\alpha) h_{1} h_{2}-h_{1} h_{3}+\beta h_{1} h_{4}+\alpha h_{2} h_{3}-h_{2} h_{4}+(1-\beta) h_{3} h_{4}=0 . \tag{3.8}
\end{equation*}
$$

Denote by \mathcal{I} the set of all subsets $I=\{i, j\}$ of the set $\{1,2,3,4\}$. For $I \in \mathcal{I}$, we define the function h_{I} as follows:

$$
\begin{aligned}
& h_{\{1,2\}}=(1-\alpha) h_{1} h_{2}, h_{\{1,3\}}=-h_{1} h_{3}, h_{\{1,4\}}=\beta h_{1} h_{4}, \\
& h_{\{2,3\}}=\alpha h_{2} h_{3}, h_{\{2,4\}}=-h_{2} h_{4}, h_{\{3,4\}}=(1-\beta) h_{3} h_{4} .
\end{aligned}
$$

Then we have

$$
\sum_{I \in \mathcal{I}} h_{I}=0 .
$$

Take a meromorphic function d on \mathbb{C} such that $d h_{I}(I \in \mathcal{I})$ are all holomorphic functions on \mathbb{C} without common zero. Then it is easy to see that

$$
\begin{aligned}
\sum_{I \in \mathcal{I}} N^{[1]}\left(r, d h_{I}\right) & \leq 3 \sum_{i=1}^{4}\left(N^{[1]}\left(r, \nu_{h_{i}}^{0}\right)+N^{[1]}\left(r, \nu_{h_{i}}^{\infty}\right)\right)+S(r, f) \\
& =3 \sum_{i=1}^{4} N^{[1]}\left(r, \mu_{i}\right)+S(r, f)
\end{aligned}
$$

Take $I_{0} \in \mathcal{I}$. Then

$$
d h_{I_{0}}=-\sum_{I \neq I_{0}} d h_{I} .
$$

Denote by t the minimum number satisfying the following: There exist t elements $I_{1}, \ldots, I_{t} \in \mathcal{I}$ and t nonzero constants $b_{v} \in \mathbb{C}(1 \leq v \leq t)$ such that $d h_{I_{0}}=\sum_{v=1}^{t} b_{v} d h_{I_{v}}$.

By the minimality of t, then the family $\left\{d h_{I_{1}}, \ldots, d h_{I_{t}}\right\}$ is linearly independent over \mathbb{C}.

Case 1. $t=1$. Then $\frac{h_{I_{0}}}{h_{I_{1}}} \in \mathbb{C} \backslash\{0\}$.
Case 2. $t \geq 2$. Consider the linearly non-degenerate holomorphic mapping $h: \mathbb{C} \rightarrow \mathbb{P}^{t-1}(\mathbb{C})$ with the representation $h=\left(d h_{I_{1}}: \cdots: d h_{I_{t}}\right)$. Applying Theorem 2.5, we have

$$
\begin{align*}
T_{h}(r) & \leq \sum_{v=1}^{t} N_{d h_{I_{v}}}^{[t-1]}(r)+N_{d h_{I_{0}}}^{[t-1]}(r)+S(r, f) \\
& \leq(t-1) \sum_{v=1}^{t} N_{d h_{I_{v}}}^{[1]}(r)+(t-1) N_{d h_{I_{0}}}^{[1]}(r)+S(r, f) \\
& \leq 3(t-1) \sum_{i=1}^{4} N\left(r, \mu_{i}\right)+S(r, f) \tag{3.9}\\
& \leq 12 \sum_{i=1}^{4} N\left(r, \mu_{i}\right)+S(r, f)(\text { since } t \leq 5)
\end{align*}
$$

We define the following rational functions:

$$
\begin{aligned}
& H_{1}(X)=\frac{c_{1}\left(X-a_{1}\right)}{c_{1}^{\prime}\left(X-b_{1}\right)}, H_{2}(X)=\frac{c_{2}\left(X-a_{2}\right)}{c_{2}^{\prime}\left(X-b_{2}\right)} \\
& H_{3}(X)=\frac{b_{2}-b_{1}}{a_{2}-a_{1}} \cdot \frac{X-a_{3}}{X-b_{3}} \\
& H_{4}(X)=\frac{\left(a_{3}-a_{2}\right)\left(b_{4}-b_{2}\right)}{\left(a_{3}^{\prime}-a_{2}^{\prime}\right)\left(b_{4}^{\prime}-b_{2}^{\prime}\right)} \cdot \frac{X-a_{4}}{X-b_{4}}
\end{aligned}
$$

For each $I \subset\{1, \ldots, 4\}$, put $I^{c}=\{1, \ldots, 4\} \backslash I$. For $0 \leq u, v \leq t, u \neq v$ and $i \in\left(\left(I_{v} \cup I_{u}\right) \backslash\left(I_{u} \cap I_{v}\right)\right)^{c}$, we see that

$$
\begin{aligned}
T\left(r, \frac{h_{I_{u}}}{h_{I_{v}}}\right. & =T\left(r, \frac{\prod_{j \in I_{u}} h_{j}}{\prod_{j \in I_{v}} h_{j}}\right)+S(r, f) \\
& \geq N\left(r, \nu_{\left.\frac{\Pi_{j \in I_{u} \backslash I_{v}} h_{j}}{\prod_{j \in I_{v} \backslash I_{u}} h_{j}}-\frac{\Pi_{j \in I_{u} \backslash I_{v} H_{j}\left(a_{i}\right)}}{\prod_{j \in I_{v} \backslash I_{u} H_{j}\left(a_{i}\right)}}\right)+S(r, f)}\right. \\
& \geq N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+S(r, f) .
\end{aligned}
$$

Similarly, we have

$$
T\left(r, \frac{h_{I_{u}}}{h_{I_{v}}}\right) \geq N_{\leq k}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)+S(r, f) .
$$

Therefore

$$
T\left(r, \frac{h_{I_{u}}}{h_{I_{v}}}\right) \geq \frac{1}{2}\left(N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+N_{\leq k}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)\right)+S(r, f) .
$$

Since $\left(I_{0} \cup I_{1} \backslash\left(I_{0} \cap I_{1}\right)\right)^{c} \cup\left(I_{1} \cup I_{2} \backslash\left(I_{1} \cap I_{2}\right)\right)^{c} \cup\left(I_{2} \cup I_{0} \backslash\left(I_{2} \cap I_{0}\right)\right)^{c}=\{1, \ldots, 4\}$, we have

$$
\begin{aligned}
3 T(r, h) & \geq T\left(r, \frac{h_{I_{0}}}{h_{I_{1}}}\right)+T\left(r, \frac{h_{I_{1}}}{h_{I_{2}}}\right)+T\left(r, \frac{h_{I_{2}}}{h_{I_{0}}}\right) \\
& \geq \frac{1}{2}\left(N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+N_{\leq k}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)\right)+S(r, f)(1 \leq i \leq 4) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \sum_{i=1}^{4}\left(N_{\leq k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+N_{\leq k}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)\right) \\
\leq & 24 T(r, h)+S(r, f) \\
\leq & 288 \sum_{i=1}^{4} N\left(r, \mu_{i}\right)+S(r, f) \\
\leq & 864 \sum_{i=1}^{4}\left(N_{>k}^{[1]}\left(r, \nu_{f-a_{i}}^{0}\right)+N_{>k}^{[1]}\left(r, \nu_{g-b_{i}}^{0}\right)\right)+S(r, f) .
\end{aligned}
$$

By Yamanoi's second main theorem (Theorem 2.1), for every $\epsilon>0$ we have

$$
\begin{aligned}
(2-\epsilon) T(r) \leq & \sum_{i=1}^{4} \sum_{u=f-a_{i}, g-b_{i}} N^{[1]}\left(r, \nu_{u}^{0}\right)+S(r, f) \\
= & \sum_{i=1}^{4} \sum_{u=f-a_{i}, g-b_{i}}\left(N_{\leq k}^{[1]}\left(r, \nu_{u}^{0}\right)+N_{>k}^{[1]}\left(r, \nu_{u}^{0}\right)\right)+S(r, f) \\
& \leq \sum_{i=1}^{4} \sum_{u=f-a_{i}, g-b_{i}}\left(\frac{865}{k+865} N_{\leq k}^{[1]}\left(r, \nu_{u}^{0}\right)\right. \\
& \left.+\left(\frac{k}{k+865} 864+1\right) N_{>k}^{[1]}\left(r, \nu_{u}^{0}\right)\right)+S(r, f)(\text { by the above inequality }) \\
& \leq \sum_{i=1}^{4} \sum_{u=f-a_{i}, g-b_{i}} \frac{865}{k+865}\left(N_{\leq k}^{[1]}\left(r, \nu_{u}^{0}\right)+N_{>k}\left(r, \nu_{u}^{0}\right)\right)+S(r, f) \\
\leq & \sum_{i=1}^{4} \sum_{u=f-a_{i}, g-b_{i}} \frac{865}{k+865} N\left(r, \nu_{u}^{0}\right)+S(r, f) \\
\leq & \frac{4 \cdot 865}{k+865} T(r)+S(r, f) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get

$$
2-\epsilon \leq \frac{4 \cdot 865}{k+865}
$$

Since the above inequality holds for every $\epsilon>0$, letting $\epsilon \rightarrow 0$ we get

$$
2 \leq \frac{4 \cdot 865}{k+865}, \text { i.e., } k \leq 865
$$

This is a contradiction.
Then from Case 1 and Case 2, it follows that for each $I \in \mathcal{I}$, there is $J \in \mathcal{I} \backslash\{I\}$ such that $\frac{h_{I}}{h_{J}} \in \mathbb{C} \backslash\{0\}$. We consider the following two cases:

Case a. There exist $I=\{i, j\}, J=\{i, l\}, j \neq l, \frac{h_{I}}{h_{J}}=$ constant. Then $h_{j}=a h_{l}$ with a is a nonzero meromorphic function in \mathcal{R}_{f}. Therefore, f is a quasi-Möbius transformation of g. This contradicts the supposition that f is not a quasi-Möbius transformation of g

Case b. There exist nonzero constants b, c such that $h_{\{1,2\}}=b h_{\{3,4\}}$ and $h_{\{1,3\}}=c h_{\{2,4\}}$, i.e.,

$$
(1-\alpha) h_{1} h_{2}=b(1-\beta) h_{3} h_{4} \text { and } h_{1} h_{3}=c h_{2} h_{4}
$$

Then $\left(\frac{h_{1}}{h_{4}}\right)^{2}=\frac{b c(1-\beta)}{1-\alpha} \in \mathcal{R}_{f}$. This implies that $\frac{h_{1}}{h_{4}} \in \mathcal{R}_{f}$. Hence f is a quasiMöbius transformation of g. This is a contradiction.

From the above two cases, we get the contradiction to the supposition. Hence f is a quasi-Möbius transformation of g. With the help of Lemma 3.2, we have the desired conclusion of the theorem.

References

[1] H. Z. Cao and T. B. Cao, Two meromorphic functions share some pairs of small functions with truncated multiplicities, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 6, 1854-1864.
[2] T. Czubiak and G. Gundersen, Meromorphic functions that share pairs of values, Complex Var. Elliptic Equ. 34 (1997), no. 1-2, 35-46.
[3] P. Li and C. C. Yang, On two meromorphic functions that share pairs of small functions, Complex Var. Elliptic Equ. 32 (1997), no. 2, 177-190.
[4] P. Li and Y. Zhang, Meromorphic functions that share some pair of small functions, Kodai Math. J. 32 (2009), no. 1, 130-145.
[5] J. Noguchi, A note on entire pseudo-holomorphic curves and the proof of CartanNochka's theorem, Kodai Math. J. 28 (2005), no. 2, 336-346.
[6] J. Noguchi and T. Ochiai, Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr. 80, Amer. Math. Soc., Providence, Rhode Island, 1990.
[7] S. D. Quang, Two meromorphic functions share some pairs of small functions, Complex Anal. Oper. Theory 7 (2013), no. 4, 1357-1370.
[8] S. D. Quang and L. N. Quynh, Two meromorphic functions sharing some pairs of small functions regardless of multiplicities, Internat. J. Math. 25 (2014), no. 2, 1450014, 16 pp.
[9] D. D. Thai and S. D. Quang, Second main theorem with truncated counting function in several complex variables for moving targets, Forum Math. 20 (2008), no. 1, 163-179.
[10] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225-294.
[11] J. Zhang and L. Yang, Meromorphic functions sharing pairs of small functions, Math. Slovaca 65 (2015), no. 1, 93-102.

Van An Nguyen
Division of Mathematics
Banking Academy
12-Chua Boc, Dong Da, Hanoi, Vietnam
E-mail address: an0883@gmail.com
Duc Quang Si
Department of Mathematics
Hanoi National University of Education
136-Xuan Thuy, Cau Giay, Hanoi, Vietnam
AND
Thang Long Institute of Mathematics and Applied Sciences
Nghiem Xuan Yem, Hoang Mai, HaNoi, Vietnam
E-mail address: quangsd@hnue.edu.vn

