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TWO MEROMORPHIC FUNCTIONS SHARING FOUR PAIRS

OF SMALL FUNCTIONS

Van An Nguyen and Duc Quang Si

Abstract. The purpose of this paper is twofold. The first is to show
that two meromorphic functions f and g must be linked by a quasi-
Möbius transformation if they share a pair of small functions regardless
of multiplicity and share other three pairs of small functions with mul-
tiplicities truncated to level 4. We also show a quasi-Möbius transfor-
mation between two meromorphic functions if they share four pairs of
small functions with multiplicities truncated by 4, where all zeros with
multiplicities at least k > 865 are omitted. Moreover the explicit Möbius-

transformation between such f and g is given. Our results are improve-
ment of some recent results.

1. Introduction

For a divisor ν on C, we define its counting function by

N(r, ν) =

∫ r

1

n(t)

t
dt (1 < r < ∞), where n(t) =

∑

|z|≤t

ν(z).

For two positive integers k,M (maybe M = ∞), we set

ν
[M ]
≤k (z) =

{

min{M, ν(z)} if ν(z) ≤ k

0 for otherwise,

and write N
[M ]
≤k (r, ν) for N(r, ν

[M ]
≤k ). We will omit character [M ] (resp. ≤ k) if

M = +∞ (resp. k = +∞). Similarly, we define N
[M ]
=k (r, ν) and N

[M ]
>k (r, ν).

For a discrete set S ⊂ C, we consider it as a reduced divisor and denote by
N(r, S) its counting function.

Let f be a nonzero holomorphic function on C. For each z0 ∈ C, expanding f
as f(z) =

∑

∞

i=0 bi(z−z0)
i around z0, then we define ν0f (z0) := min{i : bi 6= 0}.

Let ϕ be a non-constant meromorphic function on C. Then there are two
holomorphic functions ϕ1, ϕ2 without common zeros such that ϕ = ϕ1

ϕ2

. We
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define ν0ϕ := ν0ϕ1
and ν∞ϕ := ν0ϕ2

. The proximity function of ϕ is defined by:

m(r, ϕ) :=
1

2π

∫ 2π

0

log+ |ϕ(reiθ)|dθ (r > 1),

here log+ x = max{1, logx} for x ∈ (0,∞). The Nevanlinna characteristic
function of ϕ is defined by

T (r, ϕ) := m(r, ϕ) +N(r, ν∞ϕ ).

We will denote by S(r, ϕ) a quantitive equal to o(T (r, ϕ)) for all r ∈ (1,∞)
outside a finite Borel measure set.

Let f, a be two meromorphic functions on C. The function a is said to be
small (with respect to f) if and only if T (r, a) = S(r, f). We denote by Rf the
field of all small (with respect to f) functions on C.

Let f and g be two meromorphic functions on C. Let (a, b) be a pair of small
(with respect to f and g) meromorphic functions on C and let n be a positive
integer or +∞.

Definition 1.1. We say that f and g share (a, b) weakly with multiplicities
truncated to level n, or share (a, b) CM∗

n in another word, if

min{n, ν0f−a(z)} = min{n, ν0g−b(z)}

for all z ∈ C outside a discrete set of counting function equal to S(r, f)+S(r, g).

We will say that f and g share a IM∗ if n = 1 and say that f and g share
a CM∗ if n = ∞ and write CM∗ for CM∗

+∞
.

The function f is said to be a quasi-Möbius transformation of g if there
exist small (with respect to g) functions αi (1 ≤ i ≤ 4) with α1α4 − α2α3 6≡ 0
such that f = α1g+α2

α3g+α4

. If all functions αi (1 ≤ i ≤ 4) are constants, then we

say that the map f is a Möbius transformation of g. An interesting question
arises here: “Are there any quasi-Möbius transformation between f and g if

they share some pairs of small functions IM∗ or CM∗?”.
This problem has been studied by many authors, such as T. Czubiak-G.

Gundersen [2], P. Li-C. C. Yang [3], P. Li-Y. Zhang [4], S. D. Quang-L. N.
Quynh [7, 8], H. Z. Cao-T. B. Cao [1], L. Zhang-L. Yan [11] and others. We
state here the recent result of P. Li and Y. Zhang, which is one of the best
results available at present.

Theorem A (P. Li - Y. Zhang [4]). Let f and g be non-constant meromorphic

functions and ai, bi (i = 1, 2, 3, 4) (ai 6= aj , bi 6= bj , i 6= j) be small functions

(with respect to f and g). If f and g share three pairs (ai, bi), (i = 1, 2, 3) CM∗,

and share the fourth pair (a4, b4) IM
∗, then f is a quasi-Möbius transformation

of g.

In this paper, we will improve the above result to the following.

Theorem 1.2. Let f and g be non-constant meromorphic functions and ai, bi
(i = 1, 2, 3, 4) (ai 6= aj , bi 6= bj , i 6= j) be small functions (with respect to f and
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g). If f and g share the pair (a1, b1) IM∗ and share three pairs (ai, bi), (i =
2, 3, 4) CM∗

4 , then f is a quasi-Möbius transformation of g. Moreover there is

a permutation (i1, i2, i3, i4) of (1, 2, 3, 4) such that

f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

=
g − bi1
g − bi2

·
bi3 − bi2
bi3 − bi1

or
f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

=
g − bi1
g − bi2

·
bi4 − bi2
bi4 − bi1

.

In the next theorem, we will consider the case where all zeros of functions
f −ai with multiplicities at least k > 865 do not need to be counted. We prove
the following.

Theorem 1.3. Let f and g be non-constant meromorphic functions and ai, bi
(i = 1, 2, 3, 4) (ai 6= aj , bi 6= bj , i 6= j) be small functions (with respect to f and

g). Assume that

min{ν0f−ai,≤k(z), 4} = min{ν0g−bi,≤k(z), 4} (1 ≤ i ≤ 4)

for all z outside a discrete set S of counting function equal to S(r, f)+S(r, g).
If k > 865, then there is a permutation (i1, i2, i3, i4) of (1, 2, 3, 4) such that

f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

=
g − bi1
g − bi2

·
bi3 − bi2
bi3 − bi1

or
f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

=
g − bi1
g − bi2

·
bi4 − bi2
bi4 − bi1

.

2. Some lemmas and auxiliary results from Nevanlinna theory

Theorem 2.1 ([10], Corollary 1). Let f be a non-constant meromorphic func-

tion on C. Let a1, . . . , aq (q ≥ 3) be q distinct small (with respect to f) mero-

morphic functions on C. Then, for each ǫ > 0, the following holds

(q − 2− ǫ)T (r, f) ≤

q
∑

i=1

N [1](r, ν0f−ai
) + S(r, f).

Theorem 2.2 ([9], Corollary 1). Let f be a non-constant meromorphic func-

tion on C. Let a1, . . . , aq (q ≥ 3) be q distinct small (with respect to f) mero-

morphic functions on C. Then the following holds

||
q

3
T (r, f) ≤

q
∑

i=1

N [1](r, ν0f−ai
) + o(T (r, f)).

Lemma 2.3 ([3], Lemma 7). Let f1 and f2 be two non-constant meromorphic

functions satisfying

N [1](r, ν0fi) +N [1](r, ν∞fi ) = S(r, f1) + S(r, f2) (i = 1, 2).

If (f s
1f

t
2 − 1) is not identically zero for all integers s and t (|s|+ |t| > 0), then

for any positive number ǫ, we have

N0(r, 1; f1, f2) ≤ ǫ(T (r, f1) + T (r, f2)),

where N0(r, 1; f1, f2) denotes the reduced counting function of f1 and f2 related

to the common 1-points.
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Lemma 2.4. Let f be a nonconstant meromorphic function and a be a small

function (with respect to f). Then for each positive integer k (k may be +∞)
we have

N [1](r, ν0f−ai
) ≤

k

k + 1
N [1](r, ν0f−ai,≤k) +

1

k + 1
T (r, f) + S(r, f).

Proof. We have

N [1](r, ν0f−ai
) = N [1](r, ν0f−ai,≤k) +N [1](r, ν0f−ai,>k)

≤ (1−
1

k + 1
)N [1](r, ν0f−ai,≤k) +

1

k + 1
N(r, ν0f−ai

)

≤
k

k + 1
N [1](r, ν0f−ai,≤k) +

1

k + 1
T (r, f) + S(r, f).

The lemma is proved. �

Let {Hi}
q
i=1 (q ≥ N + 2) be a set of q hyperplanes in P

N (C). We say that
{Hi}

q
i=1 are in general position if for any 1 ≤ i1 < · · · < iN+1 ≤ q we have

⋂N+1
j=1 Hij = ∅.

Theorem 2.5 ([5], Theorem 3.1). Let f : C → P
N (C) be a linearly holomorphic

mapping. Let {Hi}
q
i=1 (q ≥ N+2) be a set of q hyperplanes in P

N (C) in general

position. Then

(q −N − 1)T (r, f) ≤

q
∑

i=1

N [N ](r, f∗Hi) + S(r, f),

where f∗Hi denotes the pull back divisor of Hi by f .

3. Proof of the main theorems

Lemma 3.1. Let f and g be two meromorphic functions on C. Let {ai}
3
i=1

and {bi}
3
i=1 be two sets of small (with respect to f) meromorphic functions on

C with ai 6= aj and bi 6= bj for all 1 ≤ i < j ≤ 3. Assume that

min{ν0f−ai,≤k(z), 1} = min{ν0g−bi,≤k(z), 1} (1 ≤ i ≤ 3)

for all z outside a discrete subset S of counting function equal to S(r, f). If

k ≥ 3, then || T (r, f) = O(T (r, g)) and || T (r, g) = O(T (r, f)). In particular,

S(r, f) = S(r, g).

Proof. By the second main theorem (Theorem 2.2), we have

T (r, f) ≤

3
∑

i=1

N [1](r, ν0f−ai
) + S(r, f)

≤
k

k + 1

3
∑

i=1

N
[1]
≤k(r, ν

0
f−ai

) +
3

k + 1
T (r, f) + S(r, f)
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=
k

k + 1

3
∑

i=1

(N
[1]
≤k(r, ν

0
g−bi

) +N(r, νS)) +
3

k + 1
T (r, f) + S(r, f)

≤
3k

k + 1
T (r, g) +

3

k + 1
T (r, f) + S(r, f) + S(r, g).

This implies that || T (r, f) = O(T (r, g)). Similarly, we have || T (r, g) =
O(T (r, f)). The lemma is proved. �

Lemma 3.2. Let f and g be non-constant meromorphic functions and ai, bi
(i = 1, 2, 3, 4) (ai 6= aj , bi 6= bj , i 6= j) be small functions (with respect to f and

g) such that

min{ν0f−ai,≤k(z), 1} = min{ν0g−bi,≤k(z), 1} (1 ≤ i ≤ 4)

for all z outside a discrete subset S of counting function equal to S(r, f) +
S(r, g). Assume that f is a quasi-Möbius transformation of g. If k ≥ 3, then
there is a permutation (i1, i2, i3, i4) of (1, 2, 3, 4) such that

f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

=
g − bi1
g − bi2

·
bi3 − bi2
bi3 − bi1

or
f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

=
g − bi1
g − bi2

·
bi4 − bi2
bi4 − bi1

.

Proof. By Lemma 3.1 we have S(r, f) = S(r, g). Suppose that there is only

one index i0 ∈ {1, 2, 3, 4} such that N
[1]
≤k(r, ν

0
f−ai0

) 6= s(r, f). Then by Theorem

2.1, we see that

(2− ǫ)T (r, f) ≤ N [1](r, ν0f−ai0
) +

∑

1≤i≤4

i6=i0

N [1](r, ν0f−ai
) + S(r, f)

≤ T (r, f) +
k

k + 1

∑

1≤i≤4

i6=i0

N
[1]
≤k(r, ν

0
f−ai

) +
3

k + 1
T (r, f) + S(r, f)(3.3)

≤
(

1 +
3

k + 1

)

T (r, f) + S(r, f), ∀ǫ > 0.

It implies that 2 ≤ 1 + 3
k+1 , i.e., k ≤ 2. This is a contradiction.

Therefore, there are at least two indices i1, i2 in {1, 2, 3, 4} so that

N
[1]
≤k(r, ν

0
f−aij

) = N
[1]
≤k(r, ν

0
f−aij

) + S(r, f) 6= S(r, f) (1 ≤ j ≤ 2).(3.4)

Denote by i3, i4 the remaining indices, i.e., {i1, i2, i3, i4} = {1, 2, 3, 4}. We set

F =
f − ai1
f − ai2

·
ai3 − ai2
ai3 − ai1

, G =
g − bi1
g − bi2

·
bi3 − bi2
bi3 − bi1

,

A =
ai4 − ai1
ai4 − ai2

·
ai3 − ai2
ai3 − ai1

, B =
bi4 − bi1
bi4 − bi2

·
bi3 − bi2
bi3 − bi1

.

Then we easily have the following assertions:

• T (r, F ) = T (r, f) + S(r, f), T (r,G) = T (r, g) + S(r, f),
• T (r, A) = T (r, B) + S(r, f) = S(r, f),
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• min{ν0F−a,≤k(z), 1} = min{ν0G−b,≤k(z), 1}, (a, b) ∈ {(0, 0), (1, 1),

(∞,∞), (A,B)} and for all z outside a discrete set of counting function
equal to S(r, f).

Since f and g are quasi-Möbius transformations of each other, then so are
F and G. Hence, there exist four small functions (with respect to f) α, β, γ, λ
with αλ− βγ 6= 0 such that

G =
αF + β

γF + λ
.

By the assumption, we have 0 = β(z)
λ(z) for all z ∈ Supp

(

ν0f−ai1
,≤k

)

outside a

discrete set of counting function equal to S(r, f). This implies that β

λ
≡ 0

i.e., β ≡ 0. Similarly, we have γ(z)
α(z) = 0 for all z ∈ Supp

(

ν0f−ai2
,≤k

)

outside a

discrete set of counting function equal to S(r, f), and hence γ

α
≡ 0, i.e., γ ≡ 0.

Therefore, we obtain G = α
λ
F.

We now suppose that α
λ
6∈ {1, B, B

A
}. It is easy to see that:

• N
[1]
≤k(r, ν

0
G−1) ≤ N [1](r, ν0α

γ
−1) + S(r, f) = S(r, f),

• N
[1]
≤k(r, ν

0
G−B) ≤ N [1](r, ν0α

γ
−

B
A

) + S(r, f) = S(r, f),

• N
[1]
≤k(r, ν

0
G−

α
γ
) = N

[1]
≤k(r, ν

0
F−1) + S(r, f) ≤ N [1](r, ν0α

γ
−1) + S(r, f) =

S(r, f).

Similarly to (3.3), we have

(2− ǫ)T (r,G) ≤
(

1 +
3

k + 1

)

T (r,G) + S(r,G), ∀ǫ > 0.

This implies that k ≤ 2. It is a contradiction.
Then α

λ
∈ {1, B, B

A
}. We have the following three cases:

Case 1. α
λ
≡ 1. Then we have G = F , i.e.,

f−ai1

f−ai2

·
ai3

−ai2

ai3
−ai1

=
g−bi1
g−bi2

·
bi3−bi2
bi3−bi1

.

This implies the desired conclusion of the lemma.

Case 2. α
λ
≡ B

A
. Then we have G = B

A
F , i.e.,

f−ai1

f−ai2

·
ai4

−ai2

ai4
−ai1

=
g−bi1
g−bi2

·
bi4−bi2
bi4−bi1

.

After changing indices i3 and i4, we get the desired conclusion of the lemma.

Case 3. α
λ
≡ B. Then we have G = BF , i.e.,

f−ai1

f−ai2

·
ai3

−ai2

ai3
−ai1

=
g−bi1
g−bi2

·
bi4−bi2
bi4−bi1

.

This implies the desired conclusion of the lemma.
Therefore, the above three cases complete the proof of the lemma. �

Proposition 3.5. Let F and G be non-constant meromorphic functions and

Ai, Bi (i = 1, 2, 3) (Ai 6= Aj , Bi 6= Bj , i 6= j) be small functions (with respect to

F and G). Assume that F is not a quasi-Möbius transformation of G. Then

for every positive integer n we have the following inequality

N(r, ν) ≤ N [1](r, |ν0F−A1
− ν0G−B1

|) +N [1](r, |ν0F−A2
− ν0G−B2

|) + S(r),

where S(r) = o(T (r, F )+T (r,G)) outside a finite Borel measure set of [1,+∞)
and ν is the divisor defined by ν(z) = max{0,min{ν0F−A3

(z), ν0G−B3
(z)} − 1}.
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Proof. By considering meromorphic functions F−A1

F−A2

· A3−A2

A3−A1

and G−B1

G−B2

· B3−B2

B3−B1

instead of f and g, we may assume that A1 = B1 = 0, A2 = B2 = ∞ and
A3 = B3 = 1.

Since F is not a quasi-Möbius transformation of G, we have

H :=
F ′

F
−

G′

G
=

(F/G)′

(F/G)
6≡ 0.

By the lemma on logarithmic derivatives, it follows that

m(r,H) ≤ m(r,
F ′

F
) +m(r,

G′

G
) = S(r).

We also see that H has only simple poles and if z is a pole of H , then it must
be either ν0F (z) 6= ν0G(z) or ν

∞

F (z) 6= ν∞G (z). Then it follows that

N(r, ν∞H ) ≤ N [1](r, |ν0F − ν0G|) +N [1](r, |ν∞F − ν∞G |).

On the other hand, if z is a common zero of (F−1) and (G−1), then z will be a

zero ofH =
(

F−G
G

)′

/(F
G
) with multiplicity at least (min{ν0F−1(z), ν

0
G−1(z)}−1).

This yields that

N(r, ν0H) ≥ N(r, ν).

Thus

N(r, ν) ≤ N(r, ν0H) ≤ T (r,H) = m(r,H) +N(r, ν∞H )

≤ N [1](r, |ν0F − ν0G|) +N [1](r, |ν∞F − ν∞G |).

The proposition is proved. �

Proof of Theorem 1.2. Suppose that f is not a quasi-Möbius transformation of
g. By Lemma 3.1, we have S(r, f) = S(r, g). For each 1 ≤ i ≤ 4, we define a
divisor νi by setting

νi(z) = max{0,min{ν0f−ai
(z), ν0g−ai

(z)} − 1}.

By assumptions of the theorem and by Lemma 3.5, for a permutation (i, j, s)
of (2, 3, 4) we have following estimates:

N
[1]
=2(r, ν

0
f−ai

) + 2N
[1]
=3(r, ν

0
f−ai

) + 3N
[1]
>3(r, ν

0
f−ai

)

≤ N(r, νi) + S(r, f)

≤ N [1](r, |ν0f−aj
− ν0g−bj

|) +N [1](r, |ν0f−as
− ν0g−bs

|) + S(r, f)

≤ N
[1]
>3(r, ν

0
f−aj

) +N
[1]
>3(r, ν

0
f−as

) + S(r, f).

From these inequalities, we easily obtain that

N
[1]
=2(r, ν

0
f,a2

) = N
[1]
=3(r, ν

0
f,a3

) + S(r, f)

= N
[1]
>3(r, ν

0
f,a4

) + S(r, f) = S(r, f), i = 2, 3, 4.

This yields that

N
[1]
>1(r, ν

0
f−ai

) = S(r, f) (2 ≤ i ≤ 4).
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Similarly, we also have

N
[1]
>1(r, ν

0
g−bi

) = S(r, f) (2 ≤ i ≤ 4).

We set f1 =
f−a2

f−a3

g−a3

g−a2

and f2 = f−a2

f−a4

g−a4

g−a2

. Then it is easy to see that

N [1](r, ν0f1) +N [1](r, ν∞f1 ) ≤ N
[1]
>1(r, ν

0
f−a2

) +N
[1]
>1(r, ν

0
f−a3

) = S(r, f).

This means the sets of multiple zeros of f − ai and g − ai are of counting
functions equal to S(r, f). Therefore, for i = 2, 3, 4, we have

ν0f−ai
(z) = ν0g−ai

(z) ∈ {0, 1}

for all z outside a discrete set of counting function equal to S(r, f). Hence, f
and g share pair (ai, bi) weakly with counting multiplicities for i = 2, 3, 4. By
Theorem A, we have that f is a quasi-Möbius transformation of g. This is a
contradiction.

Therefore, the supposition is untrue. Hence f is a quasi-Möbius transfor-
mation of g. With the help of Lemma 3.2, we have the conclusion of the
theorem. �

Proof of Theorem 1.3. Suppose that f is not a quasi-Möbius transformation of
g. By Lemma 3.1, we have S(r, f) = S(r, g).

For each 1 ≤ i ≤ 4, we define a divisor νi and µi by setting

νi(z) = max{0,min{ν0f−ai
(z), ν0g−ai

(z)} − 1},

µi(z) = min{1, |ν0f−ai
(z)− ν0g−ai

(z)|}.

Take three indices i, j, t in {1, 2, 3, 4}. By Lemma 3.5 and by the assumptions
of the theorem, we easily have the following

3N [1](r, µi) ≤ 3(N
[1]
>3(r, νf−ai,≤k) +N

[1]
>k(r, νf−ai

) +N
[1]
>k(r, νg−bi ))

≤ N(r, νi) + 3(N
[1]
>k(r, νf−ai

) +N
[1]
>k(r, νg−bi )) + S(r, f)

≤ 3(N
[1]
>k(r, νf−ai

) +N
[1]
>k(r, νg−bi))+N(r, µj) +N(r, µt) + S(r, f).

Summing-up both sides of the above inequality over all subsets {i, j, t} of
{1, 2, 3, 4}, we obtain

4
∑

i=1

N(r, µi) ≤

4
∑

i=1

3(N
[1]
>k(r, νf−ai

) +N
[1]
>k(r, νg−bi)) + S(r, f).(3.6)

We set:

• c1 = a3−a2

a2−a1

, c2 = a3−a1

a2−a1

, c′1 = b3−b2
b2−b1

, c′2 = b3−b1
b2−b1

,

• F1 = c1(f − a1), F2 = c2(f − a2), G1 = c′1(g − b1), G2 = c′2(g − b2),

• h1 = F1

G1

, h2 = F2

G2

, h3 = F1−F2

G1−G2

= b2−b1
a2−a1

· f−a3

g−b3
,

• α = c1(a4−a1)
c2(a4−a2)

, β =
c′
1
(b4−b1)

c′
2
(b4−b2)

,

• h4 = F1−αF2

G1−βG2

= c1(a1−a2)(f−a4)/(a4−a2)
c′
1
(b1−b2)(g−b4)/(b4−b2)

= (a3−a2)(b4−b2)
(a′

3
−a′

2
)(b′

4
−b′

2
) ·

f−a4

g−b4
.
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It is easy to see that c1 6= c2, c′1 6= c′2, α 6= 1, β 6= 1 and all ci, c
′

i (1 ≤ i ≤ 2)
are small with respect to f and

N [1](r, ν0hi
) +N [1](r, ν∞hi

) = N [1](r, µi) + S(r, f) (1 ≤ i ≤ 4).(3.7)

From the definition of functions Fi, Gi (1 ≤ i ≤ 2), we have the following
equations system:



















F1 − h1G1 = 0

F2 − h2G2 = 0

F1 − F2 − h3G1 + h3G2 = 0

F1 − αF2 − h4G1 + h4βG2 = 0.

This implies that

det









1 0 −h1 0
0 1 0 −h2

1 −1 −h3 h3

1 −α −h4 h4β









= 0.

Then

(1 − α)h1h2 − h1h3 + βh1h4 + αh2h3 − h2h4 + (1 − β)h3h4 = 0.(3.8)

Denote by I the set of all subsets I = {i, j} of the set {1, 2, 3, 4}. For I ∈ I,
we define the function hI as follows:

h{1,2} = (1− α)h1h2, h{1,3} = −h1h3, h{1,4} = βh1h4,

h{2,3} = αh2h3, h{2,4} = −h2h4, h{3,4} = (1− β)h3h4.

Then we have
∑

I∈I

hI = 0.

Take a meromorphic function d on C such that dhI (I ∈ I) are all holomorphic
functions on C without common zero. Then it is easy to see that

∑

I∈I

N [1](r, dhI) ≤ 3

4
∑

i=1

(N [1](r, ν0hi
) +N [1](r, ν∞hi

)) + S(r, f)

= 3

4
∑

i=1

N [1](r, µi) + S(r, f).

Take I0 ∈ I. Then

dhI0 = −
∑

I 6=I0

dhI .

Denote by t the minimum number satisfying the following: There exist t el-
ements I1, . . . , It ∈ I and t nonzero constants bv ∈ C (1 ≤ v ≤ t) such that

dhI0 =
∑t

v=1 bvdhIv .

By the minimality of t, then the family {dhI1 , . . . , dhIt} is linearly indepen-
dent over C.
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Case 1. t = 1. Then
hI0

hI1

∈ C \ {0}.

Case 2. t ≥ 2. Consider the linearly non-degenerate holomorphic mapping
h : C → P

t−1(C) with the representation h = (dhI1 : · · · : dhIt). Applying
Theorem 2.5, we have

Th(r) ≤
t
∑

v=1

N
[t−1]
dhIv

(r) +N
[t−1]
dhI0

(r) + S(r, f)

≤ (t− 1)

t
∑

v=1

N
[1]
dhIv

(r) + (t− 1)N
[1]
dhI0

(r) + S(r, f)

≤ 3(t− 1)

4
∑

i=1

N(r, µi) + S(r, f)

≤ 12

4
∑

i=1

N(r, µi) + S(r, f) (since t ≤ 5).

(3.9)

We define the following rational functions:

H1(X) =
c1(X − a1)

c′1(X − b1)
, H2(X) =

c2(X − a2)

c′2(X − b2)
,

H3(X) =
b2 − b1

a2 − a1
·
X − a3

X − b3
,

H4(X) =
(a3 − a2)(b4 − b2)

(a′3 − a′2)(b
′

4 − b′2)
·
X − a4

X − b4
.

For each I ⊂ {1, . . . , 4}, put Ic = {1, . . . , 4} \ I. For 0 ≤ u, v ≤ t, u 6= v and
i ∈ ((Iv ∪ Iu) \ (Iu ∩ Iv))

c, we see that

T (r,
hIu

hIv

) = T

(

r,

∏

j∈Iu
hj

∏

j∈Iv
hj

)

+ S(r, f)

≥ N

(

r, ν0∏
j∈Iu\Iv

hj
∏

j∈Iv\Iu
hj

−

∏
j∈Iu\Iv

Hj(ai)
∏

j∈Iv\Iu
Hj(ai)

)

+S(r, f)

≥ N
[1]
≤k(r, ν

0
f−ai

) + S(r, f).

Similarly, we have

T (r,
hIu

hIv

) ≥ N
[1]
≤k(r, ν

0
g−bi

) + S(r, f).

Therefore

T (r,
hIu

hIv

) ≥
1

2
(N

[1]
≤k(r, ν

0
f−ai

) +N
[1]
≤k(r, ν

0
g−bi

)) + S(r, f).
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Since (I0∪I1 \(I0∩I1))
c∪(I1∪I2 \(I1∩I2))

c∪(I2∪I0 \(I2∩I0))
c = {1, . . . , 4},

we have

3T (r, h) ≥ T (r,
hI0

hI1

) + T (r,
hI1

hI2

) + T (r,
hI2

hI0

)

≥
1

2
(N

[1]
≤k(r, ν

0
f−ai

) +N
[1]
≤k(r, ν

0
g−bi

)) + S(r, f) (1 ≤ i ≤ 4).

Thus we have

4
∑

i=1

(N
[1]
≤k(r, ν

0
f−ai

) +N
[1]
≤k(r, ν

0
g−bi

))

≤ 24T (r, h) + S(r, f)

≤ 288
4
∑

i=1

N(r, µi) + S(r, f)

≤ 864
4
∑

i=1

(N
[1]
>k(r, ν

0
f−ai

) +N
[1]
>k(r, ν

0
g−bi

)) + S(r, f).

By Yamanoi’s second main theorem (Theorem 2.1), for every ǫ > 0 we have

(2− ǫ)T (r) ≤

4
∑

i=1

∑

u=f−ai,g−bi

N [1](r, ν0u) + S(r, f)

=

4
∑

i=1

∑

u=f−ai,g−bi

(N
[1]
≤k(r, ν

0
u) +N

[1]
>k(r, ν

0
u)) + S(r, f)

≤
4
∑

i=1

∑

u=f−ai,g−bi

(
865

k + 865
N

[1]
≤k(r, ν

0
u)

+ (
k

k+865
864 + 1)N

[1]
>k(r, ν

0
u))+S(r, f) (by the above inequality)

≤
4
∑

i=1

∑

u=f−ai,g−bi

865

k + 865
(N

[1]
≤k(r, ν

0
u) +N>k(r, ν

0
u)) + S(r, f)

≤

4
∑

i=1

∑

u=f−ai,g−bi

865

k + 865
N(r, ν0u) + S(r, f)

≤
4 · 865

k + 865
T (r) + S(r, f).

Letting r → +∞, we get

2− ǫ ≤
4 · 865

k + 865
.
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Since the above inequality holds for every ǫ > 0, letting ǫ → 0 we get

2 ≤
4 · 865

k + 865
, i.e., k ≤ 865.

This is a contradiction.
Then from Case 1 and Case 2, it follows that for each I ∈ I, there is

J ∈ I \ {I} such that hI

hJ
∈ C \ {0}. We consider the following two cases:

Case a. There exist I = {i, j}, J = {i, l}, j 6= l, hI

hJ
= constant. Then

hj = ahl with a is a nonzero meromorphic function in Rf . Therefore, f is a
quasi-Möbius transformation of g. This contradicts the supposition that f is
not a quasi-Möbius transformation of g

Case b. There exist nonzero constants b, c such that h{1,2} = bh{3,4} and
h{1,3} = ch{2,4}, i.e.,

(1 − α)h1h2 = b(1− β)h3h4 and h1h3 = ch2h4.

Then
(

h1

h4

)2 = bc(1−β)
1−α

∈ Rf . This implies that h1

h4

∈ Rf . Hence f is a quasi-
Möbius transformation of g. This is a contradiction.

From the above two cases, we get the contradiction to the supposition. Hence
f is a quasi-Möbius transformation of g. With the help of Lemma 3.2, we have
the desired conclusion of the theorem. �
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