MÖBIUS FUNCTIONS OF ORDER k IN FUNCTION FIELDS

Hwanyup Jung*

Abstract

We introduce the Möbius functions μ_{k} of order k and give the asymptotic formula for the summatory function associated to theses functions in function field case.

1. Introduction

In [1], Apostol introduced the following generalization of the Möbius function $\mu(n)$. Let k denote a fixed positive integer. The Möbius functions μ_{k} of order k is defined by $\mu_{k}(1)=1, \mu_{k}(n)=0$ if $p^{k+1} \mid n$ for some prime $p, \mu_{k}(n)=(-1)^{r}$ if $n=p_{1}^{k} p_{2}^{k} \cdots p_{r}^{k} \prod_{i>r} p_{i}^{a_{i}}, 0 \leq a_{i}<k$, $\mu_{k}(n)=1$ otherwise. When $k=1, \mu_{k}(n)$ is the usual Möbius function, $\mu_{1}(n)=\mu(n)$. Apostol established the following asymptotic formula ($\left[1\right.$, Theorem 1]) for the summatory function $M_{k}(x)=\sum_{n \leq x} \mu_{k}(n)$: for $k \geq 2$ and $x \geq 2$,

$$
\begin{equation*}
\sum_{n \leq x} \mu_{k}(n)=A_{k} x+O\left(x^{1 / k} \log x\right) \tag{1.1}
\end{equation*}
$$

where A_{k} is the constant given by $A_{k}=\prod_{p}\left(1-\frac{2}{p^{k}}+\frac{1}{p^{k+1}}\right)$, the p runs over all primes. Suryanarayana [3] improved the O-estimate of the error term in (1.1) on the assumption of the Riemann hypothesis by proving the following: For $x \geq 3$,

$$
\sum_{n \leq x} \mu_{k}(n)=A_{k} x+O\left(x^{4 k /\left(4 k^{2}+1\right)} \exp \left(A \log x(\log \log x)^{-1}\right)\right)
$$

[^0]where A being an absolute positive constant. In this paper we introduce the Möbius functions of order k and give the asymptotic formula for the summatory function associated to theses functions in function field case. Let $\mathbb{A}=\mathbb{F}_{q}[t]$ denote the polynomial ring over the finite field \mathbb{F}_{q}, where q is a power of an odd prime, and let \mathbb{A}^{+}denote the set of monic polynomials in \mathbb{A}. For any integer $n \geq 0$, let $\mathbb{A}_{n}^{+}=\left\{f \in \mathbb{A}^{+}\right.$: $\operatorname{deg}(f)=n\}$. In $\S 2$ we introduce the Möbius functions μ_{k} of order k in \mathbb{A}^{+}and give the asymptotic formula for the summatory function $M_{k}(n)=\sum_{f \in \mathbb{A}_{n}^{+}} \mu_{k}(f)$ by using the analogue of Perron's formula in function fields. In $\S 3$ we discuss on the relation between the Möbius functions of order k and k-free polynomials.

We fix the following notations throughout the paper.

- $\mathcal{P}:=$ the set of monic irreducible polynomials in \mathbb{A}.
- $\zeta_{\mathbb{A}}(s)=\frac{1}{1-q^{1-s}}$, the zeta function of \mathbb{A}.
- $\mathcal{Z}(u)=\frac{1}{1-q u}$, that is, $\mathcal{Z}\left(q^{-s}\right)=\zeta_{\mathbb{A}}(s)$.
- $|f|=q^{\operatorname{deg}(f)}$ for $0 \neq f \in \mathbb{A}$.

2. Möbius function of order k

We define an arithmetical function μ_{k}, the Möbius function of order k, as follows: For any $f \in \mathbb{A}^{+}$,

$$
\mu_{k}(f)= \begin{cases}1 & \text { if } f=1 \\ 0 & \text { if } P^{k+1} \mid f \text { for some } P \in \mathcal{P} \\ (-1)^{r} & \text { if } f=P_{1}^{k} \cdots P_{r}^{k} \prod_{i>r} P_{i}^{a_{i}}, 0 \leq a_{i}<k \\ 1 & \text { otherwise }\end{cases}
$$

When $k=1, \mu_{k}(f)$ is the usual Möbius function $\mu(f)$ on \mathbb{A}^{+}, i.e., $\mu_{1}(f)=\mu(f)$. It is easy to see that μ_{k} is a multiplicative function, that is, $\mu_{k}(f g)=\mu_{k}(f) \mu_{k}(g)$ whenever $(f, g)=1$. Let $M_{k}(n)=$ $\sum_{f \in \mathbb{A}_{n}^{+}} \mu_{k}(f)$ denote the summatory function associated to μ_{k}. When $k=1$, the exact formula for $M_{1}(n)$ is given by (see [4, page 20])

$$
M_{1}(n)= \begin{cases}1 & \text { if } n=0 \tag{2.1}\\ -q & \text { if } n=1 \\ 0 & \text { if } n \geq 2\end{cases}
$$

For $k \geq 2$, we have the following asymptotic formula for the summatory function $M_{k}(n)$, which is a function field analogue of Apostol's Theorem (see [1, Theorem 1], [3, (3)]).

Theorem 2.1. Let $k \geq 2$ be an integer. For any $\epsilon>0$, we have that as $n \rightarrow \infty$,

$$
M_{k}(n)=A_{k} q^{n}+O\left(q^{n \epsilon}\right)
$$

where

$$
A_{k}=\prod_{P \in \mathcal{P}}\left(1-\frac{2}{|P|^{k}}+\frac{1}{|P|^{k+1}}\right)
$$

Proof. Consider the generating function of $M_{k}(n)$:

$$
\mathcal{M}_{k}(u)=\sum_{n=0}^{\infty} M_{k}(n) u^{n}=\sum_{f \in \mathbb{A}^{+}} \mu_{k}(f) u^{\operatorname{deg}(f)}
$$

By manipulating the Euler product, we have

$$
\mathcal{M}_{k}(u)=\mathcal{Z}(u) G_{k}(u)=\frac{G_{k}(u)}{1-q u}
$$

where

$$
G_{k}(u)=\prod_{P \in \mathcal{P}}\left(1-2 u^{k \operatorname{deg}(P)}+u^{(k+1) \operatorname{deg}(P)}\right)
$$

Note that $G_{k}(u)$ converges absolutely in the region $|u|<1$, so that $\mathcal{M}_{k}(u)$ converges absolutely in the region $|u|<q^{-1}$. Using the Perron's formula, we have

$$
\mathcal{M}_{k}(u)=\frac{1}{2 \pi i} \oint_{|u|=q^{-1-\epsilon}} \frac{G_{k}(u)}{(1-q u) u^{n+1}} d u
$$

We enlarge the contour $|u|=q^{-1-\epsilon}$ to $|u|=q^{-\epsilon}$, and we encounter only one simple pole at $u=q^{-1}$. Hence, we have
$\mathcal{M}_{k}(u)=\frac{1}{2 \pi i} \oint_{|u|=q^{-\epsilon}} \frac{G_{k}(u)}{(1-q u) u^{n+1}} d u-\operatorname{Res}\left(\frac{G_{k}(u)}{(1-q u) u^{n+1}} ; u=q^{-1}\right)$.
Since $G_{k}(u)$ converges absolutely in the region $|u|<1$, we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{|u|=q^{-\epsilon}} \frac{G_{k}(u)}{(1-q u) u^{n+1}} d u \ll q^{n \epsilon} \tag{2.3}
\end{equation*}
$$

The residue of $\frac{G_{k}(u)}{(1-q u) u^{n+1}}$ at $u=q^{-1}$ is given by

$$
\begin{equation*}
\operatorname{Res}\left(\frac{G_{k}(u)}{(1-q u) u^{n+1}} ; u=q^{-1}\right)=-A_{k} q^{n} \tag{2.4}
\end{equation*}
$$

By inserting (2.3) and (2.4) into (2.2), we get the result.

3. k-free polynomials

Let $k \geq 2$ be an integer. A polynomial $f \in \mathbb{A}^{+}$is said to be k-free if $P^{k} \nmid f$ for any $P \in \mathcal{P}$. Let \mathcal{Q}_{k} denote the set of k-free polynomials in \mathbb{A}^{+}, and let λ_{k} denote the characteristic function of \mathcal{Q}_{k} : for any $f \in \mathbb{A}^{+}$,

$$
\lambda_{k}(f)= \begin{cases}1 & \text { if } f \in \mathcal{Q}_{k} \\ 0 & \text { otherwise }\end{cases}
$$

It is easy to see that λ_{k} is a multiplicative function, that is, $\lambda_{k}(f g)=$ $\lambda_{k}(f) \lambda_{k}(g)$ whenever $(f, g)=1$. Let $N_{k}(n)=\sum_{f \in \mathbb{A}_{n}^{+}} \lambda_{k}(f)$ be the summatory function associated to λ_{k}. When $k=2$, we have (see [4, Proposition 2.3])

$$
N_{2}(n)= \begin{cases}q^{n} & \text { if } n=0 \text { or } 1 \tag{3.1}\\ \frac{q^{n}}{\zeta_{\mathbb{A}}(2)} & \text { if } n \geq 2\end{cases}
$$

We have the following exact formula for the summatory function $N_{k}(n)$ for any $k \geq 2$, which is a generalization of (3.1) and a function field analogue of Gegenbauer's theorem (see [2, page 47]).

Theorem 3.1. Let $k \geq 2$ be an integer. We have

$$
N_{k}(n)= \begin{cases}q^{n} & \text { if } 0 \leq n \leq k-1 \\ \frac{q^{n}}{\zeta_{\mathbb{A}}(k)} & \text { if } n \geq k\end{cases}
$$

Proof. Consider the generating function of $N_{k}(n)$:

$$
\mathcal{N}_{k}(u)=\sum_{n=0}^{\infty} N_{k}(n) u^{n}=\sum_{f \in \mathbb{A}^{+}} \lambda_{k}(f) u^{\operatorname{deg}(f)}
$$

By manipulating the Euler product, we have

$$
\mathcal{N}_{k}(u)=\prod_{P \in \mathcal{P}}\left(\frac{1-u^{k \operatorname{deg}(P)}}{1-u^{\operatorname{deg}(P)}}\right)=\frac{\mathcal{Z}(u)}{\mathcal{Z}\left(u^{k}\right)}=\frac{1-q u^{k}}{1-q u} .
$$

Now by comparing the coefficients, we get the result.
From the definition of μ_{k} it follows that $\lambda_{k+1}(f)=\left|\mu_{k}(f)\right|$. By (3.1), we have that for $n \geq 2$,

$$
\begin{equation*}
\sum_{f \in \mathbb{A}_{n}^{+}}|\mu(f)|=\frac{q^{n}}{\zeta_{\mathbb{A}}(2)} \tag{3.2}
\end{equation*}
$$

and, by Theorem 3.1, we have that for $k \geq 2$ and $n \geq k+1$,

$$
\begin{equation*}
\sum_{f \in \mathbb{A}_{n}^{+}}\left|\mu_{k}(f)\right|=\frac{q^{n}}{\zeta_{\mathbb{A}}(k+1)} \tag{3.3}
\end{equation*}
$$

Let $X_{k ; n}=\left\{f \in \mathbb{A}_{n}^{+}: \mu_{k}(f)=1\right\}$ and $Y_{k ; n}=\left\{f \in \mathbb{A}_{n}^{+}: \mu_{k}(f)=-1\right\}$. By (2.1) and (3.2), we have that for $n \geq 2$,

$$
\sharp X_{1 ; n}=\sharp Y_{1 ; n}=\frac{q^{n}}{2 \zeta_{\mathbb{A}}(2)} .
$$

Hence, the square-free polynomials with $\mu_{f}=1$ occur with the same frequency as those with $\mu(f)=-1$. By Theorem 2.1 and (3.3), we have that for $k \geq 2$,

$$
\sharp X_{k ; n}=\frac{1}{2}\left(\frac{1}{\zeta_{\mathbb{A}}(k+1)}+A_{k}\right) q^{n}+O\left(q^{n \epsilon}\right)
$$

and

$$
\sharp Y_{k ; n}=\frac{1}{2}\left(\frac{1}{\zeta_{\mathbb{A}}(k+1)}-A_{k}\right) q^{n}+O\left(q^{n \epsilon}\right) .
$$

Hence, we see that among the $(k+1)$-free polynomials, $k>1$, those for which $\mu_{k}(f)=1$ occur asymptotically more frequently than those for which $\mu_{k}(f)=-1$; in particular, these sets of polynomials have, respectively, the densities

$$
\frac{1}{2}\left(\frac{1}{\zeta_{\mathbb{A}}(k+1)}+A_{k}\right) \quad \text { and } \frac{1}{2}\left(\frac{1}{\zeta_{\mathbb{A}}(k+1)}-A_{k}\right)
$$

References

[1] T. M. Apostol, Möbius functions of order k. Pacific J. Math. 32 (1970), 21-27.
[2] E. Cohen, Some sets of integers related to the k-free integers. Acta Sci. Math. Szeged, 22 (1961), 223-233.
[3] D. Suryanarayana, On a theorem of Apostol concerning Möbius functions of order k. Pacific J. Math. 68 (1977), no. 1, 277-281.
[4] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, Springer-Verlag, New York, 210 (2002).
*
Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received August 10, 2016; Accepted December 16, 2016.
 2010 Mathematics Subject Classification: Primary 11A25, 11N37, 11R58.
 Key words and phrases: Möbius functions of order k, k-free polynomials, function field.

 This work was supported by the research grant of Chungbuk National University in 2015.

