JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **30**, No. 1, February 2017 http://dx.doi.org/10.14403/jcms.2017.30.1.15

MÖBIUS FUNCTIONS OF ORDER k IN FUNCTION FIELDS

HWANYUP JUNG*

ABSTRACT. We introduce the Möbius functions μ_k of order k and give the asymptotic formula for the summatory function associated to these functions in function field case.

1. Introduction

In [1], Apostol introduced the following generalization of the Möbius function $\mu(n)$. Let k denote a fixed positive integer. The Möbius functions μ_k of order k is defined by $\mu_k(1) = 1$, $\mu_k(n) = 0$ if $p^{k+1}|n$ for some prime p, $\mu_k(n) = (-1)^r$ if $n = p_1^k p_2^k \cdots p_r^k \prod_{i>r} p_i^{a_i}$, $0 \le a_i < k$, $\mu_k(n) = 1$ otherwise. When k = 1, $\mu_k(n)$ is the usual Möbius function, $\mu_1(n) = \mu(n)$. Apostol established the following asymptotic formula ([1, Theorem 1]) for the summatory function $M_k(x) = \sum_{n \le x} \mu_k(n)$: for $k \ge 2$ and $x \ge 2$,

(1.1)
$$\sum_{n \le x} \mu_k(n) = A_k x + O\left(x^{1/k} \log x\right),$$

where A_k is the constant given by $A_k = \prod_p (1 - \frac{2}{p^k} + \frac{1}{p^{k+1}})$, the *p* runs over all primes. Suryanarayana [3] improved the *O*-estimate of the error term in (1.1) on the assumption of the Riemann hypothesis by proving the following: For $x \ge 3$,

$$\sum_{n \le x} \mu_k(n) = A_k x + O\left(x^{4k/(4k^2 + 1)} \exp\left(A \log x (\log \log x)^{-1}\right)\right),$$

Received August 10, 2016; Accepted December 16, 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 11A25, 11N37, 11R58.

Key words and phrases: Möbius functions of order $k,\,k\mbox{-}{\rm free}$ polynomials, function field.

This work was supported by the research grant of Chungbuk National University in 2015.

Hwanyup Jung

where A being an absolute positive constant. In this paper we introduce the Möbius functions of order k and give the asymptotic formula for the summatory function associated to these functions in function field case. Let $\mathbb{A} = \mathbb{F}_q[t]$ denote the polynomial ring over the finite field \mathbb{F}_q , where q is a power of an odd prime, and let \mathbb{A}^+ denote the set of monic polynomials in A. For any integer $n \ge 0$, let $\mathbb{A}_n^+ = \{f \in \mathbb{A}^+ :$ $\deg(f) = n$. In §2 we introduce the Möbius functions μ_k of order k in \mathbb{A}^+ and give the asymptotic formula for the summatory function $M_k(n) = \sum_{f \in \mathbb{A}_n^+} \mu_k(f)$ by using the analogue of Perron's formula in function fields. In §3 we discuss on the relation between the Möbius functions of order k and k-free polynomials.

We fix the following notations throughout the paper.

- $\mathcal{P} :=$ the set of monic irreducible polynomials in \mathbb{A} .
- $\zeta_{\mathbb{A}}(s) = \frac{1}{1-q^{1-s}}$, the zeta function of \mathbb{A} .
- $\mathcal{Z}(u) = \frac{1}{1-qu}$, that is, $\mathcal{Z}(q^{-s}) = \zeta_{\mathbb{A}}(s)$. $|f| = q^{\deg(f)}$ for $0 \neq f \in \mathbb{A}$.

2. Möbius function of order k

We define an arithmetical function μ_k , the Möbius function of order k, as follows: For any $f \in \mathbb{A}^+$,

$$\mu_k(f) = \begin{cases} 1 & \text{if } f = 1, \\ 0 & \text{if } P^{k+1} | f \text{ for some } P \in \mathcal{P}, \\ (-1)^r & \text{if } f = P_1^k \cdots P_r^k \prod_{i > r} P_i^{a_i}, \ 0 \le a_i < k, \\ 1 & \text{otherwise.} \end{cases}$$

When k = 1, $\mu_k(f)$ is the usual Möbius function $\mu(f)$ on \mathbb{A}^+ , i.e., $\mu_1(f) = \mu(f)$. It is easy to see that μ_k is a multiplicative function, that is, $\mu_k(fg) = \mu_k(f)\mu_k(g)$ whenever (f,g) = 1. Let $M_k(n) =$ $\sum_{f \in \mathbb{A}_n^+} \mu_k(f)$ denote the summatory function associated to μ_k . When k = 1, the exact formula for $M_1(n)$ is given by (see [4, page 20])

(2.1)
$$M_1(n) = \begin{cases} 1 & \text{if } n = 0, \\ -q & \text{if } n = 1, \\ 0 & \text{if } n \ge 2. \end{cases}$$

For $k \geq 2$, we have the following asymptotic formula for the summatory function $M_k(n)$, which is a function field analogue of Apostol's Theorem (see [1, Theorem 1], [3, (3)]).

16

THEOREM 2.1. Let $k \geq 2$ be an integer. For any $\epsilon > 0$, we have that as $n \to \infty$,

$$M_k(n) = A_k q^n + O(q^{n\epsilon}),$$

where

$$A_{k} = \prod_{P \in \mathcal{P}} \left(1 - \frac{2}{|P|^{k}} + \frac{1}{|P|^{k+1}} \right).$$

Proof. Consider the generating function of $M_k(n)$:

$$\mathcal{M}_k(u) = \sum_{n=0}^{\infty} M_k(n) u^n = \sum_{f \in \mathbb{A}^+} \mu_k(f) u^{\deg(f)}.$$

By manipulating the Euler product, we have

$$\mathcal{M}_k(u) = \mathcal{Z}(u)G_k(u) = \frac{G_k(u)}{1 - qu},$$

where

$$G_k(u) = \prod_{P \in \mathcal{P}} \left(1 - 2u^{k \deg(P)} + u^{(k+1) \deg(P)} \right).$$

Note that $G_k(u)$ converges absolutely in the region |u| < 1, so that $\mathcal{M}_k(u)$ converges absolutely in the region $|u| < q^{-1}$. Using the Perron's formula, we have

$$\mathcal{M}_{k}(u) = \frac{1}{2\pi i} \oint_{|u|=q^{-1-\epsilon}} \frac{G_{k}(u)}{(1-qu)u^{n+1}} du.$$

We enlarge the contour $|u| = q^{-1-\epsilon}$ to $|u| = q^{-\epsilon}$, and we encounter only one simple pole at $u = q^{-1}$. Hence, we have

$$\mathcal{M}_{k}(u) = \frac{1}{2\pi i} \oint_{|u|=q^{-\epsilon}} \frac{G_{k}(u)}{(1-qu)u^{n+1}} du - \operatorname{Res}\left(\frac{G_{k}(u)}{(1-qu)u^{n+1}}; u=q^{-1}\right).$$

Since $G_k(u)$ converges absolutely in the region |u| < 1, we have

(2.3)
$$\frac{1}{2\pi i} \oint_{|u|=q^{-\epsilon}} \frac{G_k(u)}{(1-qu)u^{n+1}} du \ll q^{n\epsilon}.$$

The residue of $\frac{G_k(u)}{(1-qu)u^{n+1}}$ at $u = q^{-1}$ is given by

(2.4)
$$\operatorname{Res}\left(\frac{G_k(u)}{(1-qu)u^{n+1}}; u=q^{-1}\right) = -A_k q^n.$$

By inserting (2.3) and (2.4) into (2.2), we get the result.

Hwanyup Jung

3. *k*-free polynomials

Let $k \geq 2$ be an integer. A polynomial $f \in \mathbb{A}^+$ is said to be *k*-free if $P^k \nmid f$ for any $P \in \mathcal{P}$. Let \mathcal{Q}_k denote the set of *k*-free polynomials in \mathbb{A}^+ , and let λ_k denote the characteristic function of \mathcal{Q}_k : for any $f \in \mathbb{A}^+$,

$$\lambda_k(f) = \begin{cases} 1 & \text{if } f \in \mathcal{Q}_k, \\ 0 & \text{otherwise} \end{cases}$$

It is easy to see that λ_k is a multiplicative function, that is, $\lambda_k(fg) = \lambda_k(f)\lambda_k(g)$ whenever (f,g) = 1. Let $N_k(n) = \sum_{f \in \mathbb{A}_n^+} \lambda_k(f)$ be the summatory function associated to λ_k . When k = 2, we have (see [4, Proposition 2.3])

(3.1)
$$N_2(n) = \begin{cases} q^n & \text{if } n = 0 \text{ or } 1, \\ \frac{q^n}{\zeta_{\mathbb{A}}(2)} & \text{if } n \ge 2. \end{cases}$$

We have the following exact formula for the summatory function $N_k(n)$ for any $k \geq 2$, which is a generalization of (3.1) and a function field analogue of Gegenbauer's theorem (see [2, page 47]).

THEOREM 3.1. Let $k \ge 2$ be an integer. We have

$$N_k(n) = \begin{cases} q^n & \text{if } 0 \le n \le k-1, \\ \frac{q^n}{\zeta_{\mathbb{A}}(k)} & \text{if } n \ge k. \end{cases}$$

Proof. Consider the generating function of $N_k(n)$:

$$\mathcal{N}_k(u) = \sum_{n=0}^{\infty} N_k(n) u^n = \sum_{f \in \mathbb{A}^+} \lambda_k(f) u^{\deg(f)}.$$

By manipulating the Euler product, we have

$$\mathcal{N}_k(u) = \prod_{P \in \mathcal{P}} \left(\frac{1 - u^{k \deg(P)}}{1 - u^{\deg(P)}} \right) = \frac{\mathcal{Z}(u)}{\mathcal{Z}(u^k)} = \frac{1 - qu^k}{1 - qu}.$$

Now by comparing the coefficients, we get the result.

From the definition of μ_k it follows that $\lambda_{k+1}(f) = |\mu_k(f)|$. By (3.1), we have that for $n \ge 2$,

(3.2)
$$\sum_{f \in \mathbb{A}_n^+} |\mu(f)| = \frac{q^n}{\zeta_{\mathbb{A}}(2)}$$

18

and, by Theorem 3.1, we have that for $k \ge 2$ and $n \ge k+1$,

(3.3)
$$\sum_{f \in \mathbb{A}_n^+} |\mu_k(f)| = \frac{q^n}{\zeta_{\mathbb{A}}(k+1)}$$

Let $X_{k;n} = \{f \in \mathbb{A}_n^+ : \mu_k(f) = 1\}$ and $Y_{k;n} = \{f \in \mathbb{A}_n^+ : \mu_k(f) = -1\}$. By (2.1) and (3.2), we have that for $n \ge 2$,

$$\sharp X_{1;n} = \sharp Y_{1;n} = \frac{q^n}{2\zeta_{\mathbb{A}}(2)}.$$

Hence, the square-free polynomials with $\mu_f = 1$ occur with the same frequency as those with $\mu(f) = -1$. By Theorem 2.1 and (3.3), we have that for $k \geq 2$,

$$\sharp X_{k;n} = \frac{1}{2} \left(\frac{1}{\zeta_{\mathbb{A}}(k+1)} + A_k \right) q^n + O(q^{n\epsilon})$$

and

$$\sharp Y_{k;n} = \frac{1}{2} \left(\frac{1}{\zeta_{\mathbb{A}}(k+1)} - A_k \right) q^n + O(q^{n\epsilon}).$$

Hence, we see that among the (k + 1)-free polynomials, k > 1, those for which $\mu_k(f) = 1$ occur asymptotically more frequently than those for which $\mu_k(f) = -1$; in particular, these sets of polynomials have, respectively, the densities

$$\frac{1}{2} \left(\frac{1}{\zeta_{\mathbb{A}}(k+1)} + A_k \right) \quad \text{and} \quad \frac{1}{2} \left(\frac{1}{\zeta_{\mathbb{A}}(k+1)} - A_k \right).$$

References

- [1] T. M. Apostol, Möbius functions of order k. Pacific J. Math. 32 (1970), 21-27.
- [2] E. Cohen, Some sets of integers related to the k-free integers. Acta Sci. Math. Szeged, 22 (1961), 223-233.
- [3] D. Suryanarayana, On a theorem of Apostol concerning Möbius functions of order k. Pacific J. Math. 68 (1977), no. 1, 277-281.
- [4] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, Springer-Verlag, New York, 210 (2002).

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr