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GENERALIZATIONS OF NUMBER-THEORETIC SUMS

Narakorn Rompurk Kanasri, Patchara Pornsurat, and Yanapat Tongron

Abstract. For positive integers n and k, let Sk(n) and S′k(n) be the

sums of the elements in the finite sets
{
xk : 1 ≤ x ≤ n, (x, n) = 1

}
and{

xk : 1 ≤ x ≤ n/2, (x, n) = 1
}

, respectively. The formulae for both Sk(n)

and S′k(n) are established. The explicit formulae when k = 1, 2, 3 are also
given.

1. Introduction

As usual (m,n) denotes the greatest common divisor of integers m and n.
An arithmetic function f is a complex-valued function defined on the set of
positive integers. There are many interesting examples of arithmetic function.
Both of them are the Euler’s phi-function,

φ(n) = |{x : 1 ≤ x ≤ n, (x, n) = 1}|

and the Möbius function,

µ(n) =

 1 if n = 1,
0 if p2|n for some prime p,
(−1)r if n = p1p2 · · · pr, where all pi are distinct primes.

An arithmetic function f is said to be multiplicative [2, p. 107] if f(mn) =
f(m)f(n), whenever (m,n) = 1. It is well-known that φ is multiplicative
([2, p. 133], [4, p. 11], or [5, p. 69]) and so does µ ([2, p. 112], [4, p. 5], or
[5, p. 193]). For positive integers n and k, define the following finite sets of
positive integers:

Rk(n) =
{
xk : 1 ≤ x ≤ n, (x, n) = 1

}
,

R′k(n) =
{
xk : 1 ≤ x ≤ n

2
, (x, n) = 1

}
.

Observe that Rk(1) = Rk(2) = {1} = R′k(2) and R′k(1) = ∅. In this paper,∑
A denotes the sum of the elements of a finite set A of positive integers. Then
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we let

Sk(n) =
∑

Rk(n) and S′k(n) =
∑

R′k(n).

It is clear that Sk(1) = 1, S′k(1) = 0 and Sk(2) = S′k(2) = 1. Note that the
number of elements in R1(n) is φ(n) and it is a simple matter to compute
S1(n). We have known in [2, p. 143] that

S1(n) =
nφ(n)

2
(n > 1).

There is an exercise in [5, p. 196] to calculate S2(n) by the use of the Möbius
inversion formula which asserts in the following theorem ([2, p. 113], [4, p. 6],
or [5, p. 194]).

Theorem 1.1 (Möbius Inversion Formula). If F and f are arithmetic func-
tions with F (n) =

∑
d|n f(d) for every positive integer n, then

f(n) =
∑
d|n

µ(d)F
(n
d

)
(n ≥ 1),

where the sum
∑

d|n is over all divisors d of n.

The formula for S2(n) is given in [5, p. 196] that

(1) S2(n) =
n2

6

∑
d|n

µ(d)

(
2n

d
+ 3 +

d

n

)
(n ≥ 1).

From the following facts in [2, p. 144], [2, p. 113], and [2, p. 116], we have

(2)
∑
d|n

µ(d)

d
=
φ(n)

n
(n ≥ 1),

(3)
∑
d|n

µ(d) =

{
1 if n = 1,
0 if n > 1,

(4)
∑
d|n

µ(d)d = ψ(n) (n ≥ 1),

respectively, where ψ(1) = 1 and ψ(n) =
∏

p|n(1− p) for n > 1, the product is

over the prime divisors of n. The formula (1) can be rewritten as

S2(n) =
2n2φ(n) + nψ(n)

6
(n > 1).

In another direction, Baum [1] provided the formula for S′1(n) as follows:

S′1(n) =
1

8
(nφ(n)− |r|ψ(n)) (n > 2),
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where n ≡ r (mod 4) with r ∈ {−1, 0, 1, 2}, and he advised the reader to prove

S′2(n) =



n2φ(n) + 2nψ(n)

24
if n ≡ 0 (mod 4),

n2φ(n)− nψ(n)

24
if n ≡ ±1 (mod 4),

n2φ(n)− 4nψ(n)

24
if n ≡ 2 (mod 4),

(n > 2)

as an exercise. However, there is no any general formula for Sk(n) or S′k(n).
So we are interested in establishing that for Sk(n) and S′k(n) for all positive
integers n and k.

In the present work, we establish the general formulae for both Sk(n) and
S′k(n) by the use of the Möbius inversion formula. We also confirm that the
known results for k = 1, 2 are the special cases of our results. Moreover, we
give the explicit formulae for S3(n) and S′3(n).

2. Main results

For convenience, we define gk(n) = 1k + 2k + · · ·+nk for positive integers n
and k. It is well known that

g1(n) =
n(n+ 1)

2
,

g2(n) =
n(n+ 1)(2n+ 1)

6
,

g3(n) =
n2(n+ 1)2

4
,

and (see [6])

gk(n) =

k∑
j=1

j∑
i=0

(−1)j−iik
(
j

i

)(
n+ 1

j + 1

)
for all positive integers n and k. Any other version of the formula for gk(n)
can be found in [3] or [7, p. 123].

First, we establish the formula for Sk(n) in the following theorem.

Theorem 2.1. For any positive integer k, we have

Sk(n) =
∑
d|n

µ(d)dkgk

(n
d

)
for n ≥ 1.

Proof. Let n and k be positive integers. For a positive divisor d of n which is
denoted by d|n, define

Ad = {xk : 1 ≤ x ≤ n, (x, n) = d}.
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Note that Ad 6= ∅ since dk ∈ Ad. Clearly, ∪d|nAd = {1k, 2k, . . . , nk} and
Ad1 ∩Ad2 = ∅ for d1 6= d2. It follows that

(5) gk(n) =

n∑
i=1

ik =
∑
d|n

∑
Ad.

We next show that

(6) Ad = dkRk

(n
d

)
.

If xk ∈ Ad, then 1 ≤ x/d ≤ n/d, x/d ∈ N, and (x/d, n/d) = 1. Consequently,
(x/d)k ∈ Rk(n/d) and so xk ∈ dkRk(n/d). If yk ∈ Rk(n/d), then 1 ≤ y ≤ n/d
and (y, n/d) = 1. It follows that d ≤ dy ≤ n and (dy, n) = d. This shows that
(dy)k ∈ Ad.

By (6), we have for d|n,∑
Ad =

∑
dkRk

(n
d

)
= dkSk

(n
d

)
.

It follows by (5) that

gk(n) =
∑
d|n

dkSk

(n
d

)
=
∑
d|n

(n
d

)k
Sk(d).

By the Möbius inversion formula with f(n) = Sk(n)/nk and F (n) = gk(n)/nk,
we get

Sk(n)

nk
=
∑
d|n

µ(d)
dk

nk
gk

(n
d

)
,

as desired. �

We observe that the formula for Sk(n) does not depend upon the form of n.
However, we prove in the following theorem that the formula for S′k(n) does.
The residue modulo 4 of n together with the formula for Sk(n) in Theorem 2.1
determines the formula for S′k(n) as follows:

Theorem 2.2. For any positive integer k, we have

S′k(n) =



∑
d|(n/2)

µ(d)dkgk

( n
2d

)
if n ≡ 0 (mod 4),

∑
d|n

µ(d)dkgk

(
n/d− 1

2

)
if n ≡ ±1 (mod 4),

∑
d|(n/2)

µ(d)dk
(
gk

( n
2d

)
− 2kgk

(
n/2d− 1

2

))
if n ≡ 2 (mod 4)

for all n > 2.
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Proof. We prove this formula by considering three cases.
Case I: n ≡ 0 (mod 4). Then n and n/2 are even. It follows that (x, n) = 1 if
and only if (x, n/2) = 1 for any positive integer x. From Theorem 2.1, we have

S′k(n) =
∑{

xk : 1 ≤ x ≤ n

2
, (x, n) = 1

}
=
∑{

xk : 1 ≤ x ≤ n

2
,
(
x,
n

2

)
= 1
}

= Sk

(n
2

)
=

∑
d|(n/2)

µ(d)dkgk

( n
2d

)
.

Case II: n ≡ ±1 (mod 4). For d|n, define

Bd =
{
xk : 1 ≤ x ≤ n

2
, (x, n) = d

}
.

Note that Bd = ∅ if and only if d = n. Clearly, ∪d|nBd = {1k, 2k, . . . , ((n −
1)/2)k} and Bd1 ∩Bd2 = ∅ for d1 6= d2, so we have

(7) gk

(
n− 1

2

)
=

n−1
2∑

i=1

ik =
∑
d|n

∑
Bd.

Next, we show that

(8) Bd = dkR′k

(n
d

)
.

Observe thatR′k(n/d) = ∅ if and only if d = n. If xk ∈ Bd, then 1 ≤ x/d ≤ n/2d
and (x/d, n/d) = 1. It follows that (x/d)k ∈ R′k(n/d). If yk ∈ R′k(n/d), then
d ≤ dy ≤ n/2 and (dy, n) = d, that is (dy)k ∈ Bd.

By (8), we obtain ∑
Bd = dkS′k

(n
d

)
.

It follows by (7) that

gk

(
n− 1

2

)
=
∑
d|n

dkS′k

(n
d

)
=
∑
d|n

(n
d

)k
S′k(d).

Rewrite the above equation to get∑
d|n

S′k(d)

dk
=

1

nk
gk

(
n− 1

2

)
.

Applying the Möbius inversion formula with f(n) = S′k(n)/nk and F (n) =
gk((n− 1)/2)/nk, we have the desired result

S′k(n)

nk
=
∑
d|n

µ(d)
dk

nk
gk

(
n/d− 1

2

)
.

Case III: n ≡ 2 (mod 4). Then we can write n = 2m for some odd integer m.
Thus for any positive integer x, we have (x, n) = 1 if and only if (x,m) = 1
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and x is odd. We also observe that for any positive integer y, (2y,m) = 1 if
and only if (y,m) = 1. By using Theorem 2.1 and Case II, we have

S′k(n) =
∑{

xk : 1 ≤ x ≤ n

2
, (x, n) = 1

}
=
∑{

xk : 1 ≤ x ≤ m, (x,m) = 1, x is odd
}

=
∑({

xk : 1 ≤ x ≤ m, (x,m) = 1
}

\
{
xk : 1 ≤ x ≤ m, (x,m) = 1, x is even

})
=
∑({

xk : 1 ≤ x ≤ m, (x,m) = 1
}

\
{

(2y)k : 1 ≤ 2y ≤ m, (2y,m) = 1
})

=
∑({

xk : 1 ≤ x ≤ m, (x,m) = 1
}

\ 2k
{
yk : 1 ≤ y ≤ m

2
, (y,m) = 1

})
= Sk(m)− 2kS′k(m)

=
∑
d|m

µ(d)dkgk

(m
d

)
− 2k

∑
d|m

µ(d)dkgk

(
m/d− 1

2

)

=
∑

d|(n/2)

µ(d)dk
(
gk

( n
2d

)
− 2kgk

(
n/2d− 1

2

))
,

as desired. �

3. Explicit formulae

In this section, we provide the explicit formulae for Sk(n) and S′k(n), where
k = 1, 2, and 3, by using the following lemmas. The first lemma is verified by
the fact that if f is a multiplicative function and F is an arithmetic function
defined by F (n) =

∑
d|n f(d), then F is also multiplicative [2, p. 109].

Lemma 3.1. For positive integers m and n, we have

(9)
∑
d|n

µ(d)dm = ψm(n),

where ψm(1) = 1 and ψm(n) =
∏

p|n (1− pm) for n > 1.

Proof. If n = 1, then we are done. For n ≥ 2, we write n = pk1
1 p

k2
2 · · · pkr

r as its
prime factorization. Since µ is multiplicative, the function f defined by f(n) =
µ(n)nm is multiplicative and so the function F defined by F (n) =

∑
d|n µ(d)dm

is also multiplicative. Since

F (pki
i ) =

∑
d|pki

i

µ(d)dm = µ(1) + µ(pi)p
m
i = 1− pmi
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for all 1 ≤ i ≤ r, we obtain∑
d|n

µ(d)dm = F (n) =
∏

1≤i≤r

F (pki
i ) =

∏
p|n

(1− pm) = ψm(n),

as desired. �

Note that ψ1 = ψ and so the equation (4) is a special case of Lemma 3.1.

Lemma 3.2. For even positive integer n > 2, we have

(i) φ
(n

2

)
=

{
φ(n)/2 if n ≡ 0 (mod 4),
φ(n) if n ≡ 2 (mod 4),

(ii) ψm

(n
2

)
=

{
ψm(n) if n ≡ 0 (mod 4),
ψm(n)/(1− 2m) if n ≡ 2 (mod 4)

for m ≥ 1.

Proof. If n ≡ 0 (mod 4), then we can write n = 2rt for some positive integers
r and t such that r ≥ 2 and t is odd. Since φ is multiplicative, we obtain

φ
(n

2

)
= φ(2r−1)φ(t) =

φ(2r)φ(t)

2
=
φ(n)

2
,

ψm

(n
2

)
=

∏
p|2r−1t

(1− pm) =
∏
p|2rt

(1− pm) = ψm(n).

If n ≡ 2 (mod 4), then we can write n = 2t for some odd integer t and so

φ
(n

2

)
= φ(t) = φ(2)φ(t) = φ(2t) = φ(n),

ψm

(n
2

)
=
∏
p|t

(1− pm) =

∏
p|2t(1− pm)

1− 2m
=
ψm(n)

1− 2m
.

This completes the proof. �

The following example shows that the known formulae for S1(n) in [2, p. 143]
and S′1(n) in [1] follow from our formulae in Theorem 2.1 and Theorem 2.2,
respectively.

Example 3.3. Recall that g1(n) = n(n+1)/2 for all n ≥ 1. By using Theorem
2.1, (2), and (3), we get

S1(n) =
∑
d|n

µ(d)dg1

(n
d

)
=

1

2

∑
d|n

µ(d)

(
n2

d
+ n

)

=
nφ(n)

2



1112 N. R. KANASRI, P. PORNSURAT, AND Y. TONGRON

for n > 1 as desired. To calculate the explicit formula for S′1(n) by using
Theorem 2.2, we consider three cases for n > 2 as follows:
Case I: n ≡ 0 (mod 4).

S′1(n) =
∑

d|(n/2)

µ(d)dg1

( n
2d

)
=

1

8

∑
d|(n/2)

µ(d)

(
n2

d
+ 2n

)

=
1

8

(
n2φ(n/2)

n/2

)
by (2) and (3)

=
nφ(n)

8
by Lemma 3.2(i).

Case II: n ≡ ±1 (mod 4).

S′1(n) =
∑
d|n

µ(d)dg1

(
n/d− 1

2

)

=
1

8

∑
d|n

µ(d)

(
n2

d
− d
)

=
1

8

(
n2φ(n)

n
− ψ(n)

)
by (2) and (4)

=
1

8
(nφ(n)− ψ(n)) .

Case III: n ≡ 2 (mod 4).

S′1(n) =
∑

d|(n/2)

µ(d)d

[
g1

( n
2d

)
− 2g1

(
n/2d− 1

2

)]

=
1

8

∑
d|(n/2)

µ(d)

(
n2

2d
+ 2n+ 2d

)

=
1

8

(
n2φ(n/2)

2(n/2)
+ 2ψ

(n
2

))
by (2), (3), and (4)

=
1

8
(nφ(n)− 2ψ(n)) by Lemma 3.2(i), (ii).

The next example confirms that the formulae in Theorem 2.1 and Theorem
2.2 are generalization of S2(n) in [5, p. 196] and S′2(n) in [1], respectively.

Example 3.4. Recall that g2(n) = n(n+ 1)(2n+ 1)/6 for all n ≥ 1. By using
Theorem 2.1, (2), (3), and (4), we get

S2(n) =
∑
d|n

µ(d)d2g2

(n
d

)
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=
1

6

∑
d|n

µ(d)

(
2n3

d
+ 3n2 + nd

)

=
2n2φ(n) + nψ(n)

6

for n > 1 as desired. To calculate the explicit formula for S′2(n) by using
Theorem 2.2, we consider three cases for n > 2 as follows:
Case I: n ≡ 0 (mod 4).

S′2(n) =
∑

d|(n/2)

µ(d)d2g2

( n
2d

)
=

1

24

∑
d|(n/2)

µ(d)

(
n3

d
+ 3n2 + 2nd

)

=
1

24

(
n3φ(n/2)

n/2
+ 2nψ

(n
2

))
by (2), (3), and (4)

=
n2φ(n) + 2nψ(n)

24
by Lemma 3.2(i), (ii) with ψ1 = ψ.

Case II: n ≡ ±1 (mod 4).

S′2(n) =
∑
d|n

µ(d)d2g2

(
n/d− 1

2

)

=
1

24

∑
d|n

µ(d)

(
n3

d
− nd

)

=
n2φ(n)− nψ(n)

24
by (2) and (4).

Case III: n ≡ 2 (mod 4).

S′2(n) =
∑

d|(n/2)

µ(d)d2
[
g2

( n
2d

)
− 22g2

(
n/2d− 1

2

)]

=
1

24

∑
d|(n/2)

µ(d)

(
n3

2d
+ 3n2 + 4nd

)

=
1

24

(
n3φ(n/2)

2(n/2)
+ 4nψ

(n
2

))
by (2), (3), and (4)

=
n2φ(n)− 4nψ(n)

24
by Lemma 3.2(i), (ii) with ψ1 = ψ.

Finally, we give the formulae for S3(n) and S′3(n) as in the following example.

Example 3.5. We show that

S3(n) =
n3φ(n) + n2ψ(n)

4
(n > 1)
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and

S′3(n) =



n3φ(n) + 4n2ψ(n)

64
if n ≡ 0 (mod 4),

n3φ(n)− 2n2ψ(n) + ψ3(n)

64
if n ≡ ±1 (mod 4), (n > 2)

n3φ(n)− 8n2ψ(n) + 8ψ3(n)/7

64
if n ≡ 2 (mod 4).

Recall that g3(n) = n2(n+ 1)2/4 for all n ≥ 1. By using Theorem 2.1, (2), (3),
and (4), we get

S3(n) =
∑
d|n

µ(d)d3g3

(n
d

)
=

1

4

∑
d|n

µ(d)

(
n4

d
+ 2n3 + n2d

)

=
n3φ(n) + n2ψ(n)

4

for n > 1 as desired. To calculate the explicit formula for S′3(n) by using
Theorem 2.2, we consider three cases for n > 2 as follows:
Case I: n ≡ 0 (mod 4).

S′3(n) =
∑

d|(n/2)

µ(d)d3g3

( n
2d

)
=

1

64

∑
d|(n/2)

µ(d)

(
n4

d
+ 4n3 + 4n2d

)

=
1

64

(
n4φ(n/2)

n/2
+ 4n2ψ

(n
2

))
by (2), (3), and (4)

=
n3φ(n) + 4n2ψ(n)

64
by Lemma 3.2(i), (ii).

Case II: n ≡ ±1 (mod 4).

S′3(n) =
∑
d|n

µ(d)d3g3

(
n/d− 1

2

)

=
1

64

∑
d|n

µ(d)

(
n4

d
− 2n2d+ d3

)

=
n3φ(n)− 2n2ψ(n) + ψ3(n)

64
by (2), (4), and (9).

Case III: n ≡ 2 (mod 4).

S′3(n) =
∑

d|(n/2)

µ(d)d3
[
g3

( n
2d

)
− 23g3

(
n/2d− 1

2

)]
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=
1

64

∑
d|(n/2)

µ(d)

(
n4

2d
+ 4n3 + 8n2d− 8d3

)

=
1

64

(
n4φ(n/2)

2(n/2)
+ 8n2ψ

(n
2

)
− 8ψ3

(n
2

))
by (2), (3), (4), and (9)

=
n3φ(n)− 8n2ψ(n) + 8ψ3(n)/7

64
by Lemma 3.2(i), (ii).

For the last case, we observe that 7|ψ3(n) since n is even.
By the same way, the reader can verify any other explicit formula for Sk(n)

and S′k(n) (k > 3) by using the formula for gk(n), Lemma 3.1, and Lemma 3.2
as an exercise.
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