GENERALIZATIONS OF NUMBER-THEORETIC SUMS

Narakorn Rompurk Kanasri, Patchara Pornsurat, and Yanapat Tongron

Abstract

For positive integers n and k, let $S_{k}(n)$ and $S_{k}^{\prime}(n)$ be the sums of the elements in the finite sets $\left\{x^{k}: 1 \leq x \leq n,(x, n)=1\right\}$ and $\left\{x^{k}: 1 \leq x \leq n / 2,(x, n)=1\right\}$, respectively. The formulae for both $S_{k}(n)$ and $S_{k}^{\prime}(n)$ are established. The explicit formulae when $k=1,2,3$ are also given.

1. Introduction

As usual (m, n) denotes the greatest common divisor of integers m and n. An arithmetic function f is a complex-valued function defined on the set of positive integers. There are many interesting examples of arithmetic function. Both of them are the Euler's phi-function,

$$
\phi(n)=|\{x: 1 \leq x \leq n,(x, n)=1\}|
$$

and the Möbius function,

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } p^{2} \mid n \text { for some prime } p \\ (-1)^{r} & \text { if } n=p_{1} p_{2} \cdots p_{r}, \text { where all } p_{i} \text { are distinct primes. }\end{cases}
$$

An arithmetic function f is said to be multiplicative [2, p. 107] if $f(m n)=$ $f(m) f(n)$, whenever $(m, n)=1$. It is well-known that ϕ is multiplicative ([2, p. 133], [4, p. 11], or [5, p. 69]) and so does μ ([2, p. 112], [4, p. 5], or [5, p. 193]). For positive integers n and k, define the following finite sets of positive integers:

$$
\begin{aligned}
R_{k}(n) & =\left\{x^{k}: 1 \leq x \leq n,(x, n)=1\right\} \\
R_{k}^{\prime}(n) & =\left\{x^{k}: 1 \leq x \leq \frac{n}{2},(x, n)=1\right\}
\end{aligned}
$$

Observe that $R_{k}(1)=R_{k}(2)=\{1\}=R_{k}^{\prime}(2)$ and $R_{k}^{\prime}(1)=\emptyset$. In this paper, $\sum A$ denotes the sum of the elements of a finite set A of positive integers. Then

Received October 2, 2018; Accepted March 15, 2019.
2010 Mathematics Subject Classification. 11A25.
Key words and phrases. arithmetic function, Euler's phi-function, Möbius function, Möbius inversion formula, sum of power of integers.
we let

$$
S_{k}(n)=\sum R_{k}(n) \quad \text { and } \quad S_{k}^{\prime}(n)=\sum R_{k}^{\prime}(n)
$$

It is clear that $S_{k}(1)=1, S_{k}^{\prime}(1)=0$ and $S_{k}(2)=S_{k}^{\prime}(2)=1$. Note that the number of elements in $R_{1}(n)$ is $\phi(n)$ and it is a simple matter to compute $S_{1}(n)$. We have known in [2, p. 143] that

$$
S_{1}(n)=\frac{n \phi(n)}{2} \quad(n>1)
$$

There is an exercise in [5, p. 196] to calculate $S_{2}(n)$ by the use of the Möbius inversion formula which asserts in the following theorem ([2, p. 113], [4, p. 6], or [5, p. 194]).

Theorem 1.1 (Möbius Inversion Formula). If F and f are arithmetic functions with $F(n)=\sum_{d \mid n} f(d)$ for every positive integer n, then

$$
f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right) \quad(n \geq 1)
$$

where the sum $\sum_{d \mid n}$ is over all divisors d of n.
The formula for $S_{2}(n)$ is given in [5, p. 196] that

$$
\begin{equation*}
S_{2}(n)=\frac{n^{2}}{6} \sum_{d \mid n} \mu(d)\left(\frac{2 n}{d}+3+\frac{d}{n}\right) \quad(n \geq 1) \tag{1}
\end{equation*}
$$

From the following facts in [2, p. 144], [2, p. 113], and [2, p. 116], we have

$$
\begin{equation*}
\sum_{d \mid n} \frac{\mu(d)}{d}=\frac{\phi(n)}{n} \quad(n \geq 1) \tag{2}
\end{equation*}
$$

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \tag{3}\\ 0 & \text { if } n>1\end{cases}
$$

$$
\begin{equation*}
\sum_{d \mid n} \mu(d) d=\psi(n) \quad(n \geq 1) \tag{4}
\end{equation*}
$$

respectively, where $\psi(1)=1$ and $\psi(n)=\prod_{p \mid n}(1-p)$ for $n>1$, the product is over the prime divisors of n. The formula (1) can be rewritten as

$$
S_{2}(n)=\frac{2 n^{2} \phi(n)+n \psi(n)}{6} \quad(n>1)
$$

In another direction, Baum [1] provided the formula for $S_{1}^{\prime}(n)$ as follows:

$$
S_{1}^{\prime}(n)=\frac{1}{8}(n \phi(n)-|r| \psi(n)) \quad(n>2)
$$

where $n \equiv r(\bmod 4)$ with $r \in\{-1,0,1,2\}$, and he advised the reader to prove

$$
S_{2}^{\prime}(n)=\left\{\begin{array}{ll}
\frac{n^{2} \phi(n)+2 n \psi(n)}{24} & \text { if } n \equiv 0 \quad(\bmod 4), \\
\frac{n^{2} \phi(n)-n \psi(n)}{24} & \text { if } n \equiv \pm 1 \quad(\bmod 4), \\
\frac{n^{2} \phi(n)-4 n \psi(n)}{24} & \text { if } n \equiv 2 \quad(\bmod 4),
\end{array} \quad(n>2)\right.
$$

as an exercise. However, there is no any general formula for $S_{k}(n)$ or $S_{k}^{\prime}(n)$. So we are interested in establishing that for $S_{k}(n)$ and $S_{k}^{\prime}(n)$ for all positive integers n and k.

In the present work, we establish the general formulae for both $S_{k}(n)$ and $S_{k}^{\prime}(n)$ by the use of the Möbius inversion formula. We also confirm that the known results for $k=1,2$ are the special cases of our results. Moreover, we give the explicit formulae for $S_{3}(n)$ and $S_{3}^{\prime}(n)$.

2. Main results

For convenience, we define $g_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}$ for positive integers n and k. It is well known that

$$
\begin{gathered}
g_{1}(n)=\frac{n(n+1)}{2}, \\
g_{2}(n)=\frac{n(n+1)(2 n+1)}{6}, \\
g_{3}(n)=\frac{n^{2}(n+1)^{2}}{4},
\end{gathered}
$$

and (see [6])

$$
g_{k}(n)=\sum_{j=1}^{k} \sum_{i=0}^{j}(-1)^{j-i} i^{k}\binom{j}{i}\binom{n+1}{j+1}
$$

for all positive integers n and k. Any other version of the formula for $g_{k}(n)$ can be found in [3] or [7, p. 123].

First, we establish the formula for $S_{k}(n)$ in the following theorem.
Theorem 2.1. For any positive integer k, we have

$$
S_{k}(n)=\sum_{d \mid n} \mu(d) d^{k} g_{k}\left(\frac{n}{d}\right)
$$

for $n \geq 1$.
Proof. Let n and k be positive integers. For a positive divisor d of n which is denoted by $d \mid n$, define

$$
A_{d}=\left\{x^{k}: 1 \leq x \leq n,(x, n)=d\right\} .
$$

Note that $A_{d} \neq \emptyset$ since $d^{k} \in A_{d}$. Clearly, $\cup_{d \mid n} A_{d}=\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ and $A_{d_{1}} \cap A_{d_{2}}=\emptyset$ for $d_{1} \neq d_{2}$. It follows that

$$
\begin{equation*}
g_{k}(n)=\sum_{i=1}^{n} i^{k}=\sum_{d \mid n} \sum A_{d} \tag{5}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
A_{d}=d^{k} R_{k}\left(\frac{n}{d}\right) \tag{6}
\end{equation*}
$$

If $x^{k} \in A_{d}$, then $1 \leq x / d \leq n / d, x / d \in \mathbb{N}$, and $(x / d, n / d)=1$. Consequently, $(x / d)^{k} \in R_{k}(n / d)$ and so $x^{k} \in d^{k} R_{k}(n / d)$. If $y^{k} \in R_{k}(n / d)$, then $1 \leq y \leq n / d$ and $(y, n / d)=1$. It follows that $d \leq d y \leq n$ and $(d y, n)=d$. This shows that $(d y)^{k} \in A_{d}$.

By (6), we have for $d \mid n$,

$$
\sum A_{d}=\sum d^{k} R_{k}\left(\frac{n}{d}\right)=d^{k} S_{k}\left(\frac{n}{d}\right) .
$$

It follows by (5) that

$$
g_{k}(n)=\sum_{d \mid n} d^{k} S_{k}\left(\frac{n}{d}\right)=\sum_{d \mid n}\left(\frac{n}{d}\right)^{k} S_{k}(d) .
$$

By the Möbius inversion formula with $f(n)=S_{k}(n) / n^{k}$ and $F(n)=g_{k}(n) / n^{k}$, we get

$$
\frac{S_{k}(n)}{n^{k}}=\sum_{d \mid n} \mu(d) \frac{d^{k}}{n^{k}} g_{k}\left(\frac{n}{d}\right)
$$

as desired.
We observe that the formula for $S_{k}(n)$ does not depend upon the form of n. However, we prove in the following theorem that the formula for $S_{k}^{\prime}(n)$ does. The residue modulo 4 of n together with the formula for $S_{k}(n)$ in Theorem 2.1 determines the formula for $S_{k}^{\prime}(n)$ as follows:

Theorem 2.2. For any positive integer k, we have
$S_{k}^{\prime}(n)= \begin{cases}\sum_{d \mid(n / 2)} \mu(d) d^{k} g_{k}\left(\frac{n}{2 d}\right) & \text { if } n \equiv 0(\bmod 4), \\ \sum_{d \mid n} \mu(d) d^{k} g_{k}\left(\frac{n / d-1}{2}\right) & \text { if } n \equiv \pm 1(\bmod 4), \\ \sum_{d \mid(n / 2)} \mu(d) d^{k}\left(g_{k}\left(\frac{n}{2 d}\right)-2^{k} g_{k}\left(\frac{n / 2 d-1}{2}\right)\right) & \text { if } n \equiv 2(\bmod 4)\end{cases}$
for all $n>2$.

Proof. We prove this formula by considering three cases.
Case I: $n \equiv 0(\bmod 4)$. Then n and $n / 2$ are even. It follows that $(x, n)=1$ if and only if $(x, n / 2)=1$ for any positive integer x. From Theorem 2.1, we have

$$
\begin{aligned}
S_{k}^{\prime}(n) & =\sum\left\{x^{k}: 1 \leq x \leq \frac{n}{2},(x, n)=1\right\} \\
& =\sum\left\{x^{k}: 1 \leq x \leq \frac{n}{2},\left(x, \frac{n}{2}\right)=1\right\} \\
& =S_{k}\left(\frac{n}{2}\right)=\sum_{d \mid(n / 2)} \mu(d) d^{k} g_{k}\left(\frac{n}{2 d}\right) .
\end{aligned}
$$

Case II: $n \equiv \pm 1(\bmod 4)$. For $d \mid n$, define

$$
B_{d}=\left\{x^{k}: 1 \leq x \leq \frac{n}{2},(x, n)=d\right\} .
$$

Note that $B_{d}=\emptyset$ if and only if $d=n$. Clearly, $\cup_{d \mid n} B_{d}=\left\{1^{k}, 2^{k}, \ldots,((n-\right.$ 1) $\left./ 2)^{k}\right\}$ and $B_{d_{1}} \cap B_{d_{2}}=\emptyset$ for $d_{1} \neq d_{2}$, so we have

$$
\begin{equation*}
g_{k}\left(\frac{n-1}{2}\right)=\sum_{i=1}^{\frac{n-1}{2}} i^{k}=\sum_{d \mid n} \sum B_{d} . \tag{7}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
B_{d}=d^{k} R_{k}^{\prime}\left(\frac{n}{d}\right) \tag{8}
\end{equation*}
$$

Observe that $R_{k}^{\prime}(n / d)=\emptyset$ if and only if $d=n$. If $x^{k} \in B_{d}$, then $1 \leq x / d \leq n / 2 d$ and $(x / d, n / d)=1$. It follows that $(x / d)^{k} \in R_{k}^{\prime}(n / d)$. If $y^{k} \in R_{k}^{\prime}(n / d)$, then $d \leq d y \leq n / 2$ and $(d y, n)=d$, that is $(d y)^{k} \in B_{d}$.

By (8), we obtain

$$
\sum B_{d}=d^{k} S_{k}^{\prime}\left(\frac{n}{d}\right)
$$

It follows by (7) that

$$
g_{k}\left(\frac{n-1}{2}\right)=\sum_{d \mid n} d^{k} S_{k}^{\prime}\left(\frac{n}{d}\right)=\sum_{d \mid n}\left(\frac{n}{d}\right)^{k} S_{k}^{\prime}(d) .
$$

Rewrite the above equation to get

$$
\sum_{d \mid n} \frac{S_{k}^{\prime}(d)}{d^{k}}=\frac{1}{n^{k}} g_{k}\left(\frac{n-1}{2}\right)
$$

Applying the Möbius inversion formula with $f(n)=S_{k}^{\prime}(n) / n^{k}$ and $F(n)=$ $g_{k}((n-1) / 2) / n^{k}$, we have the desired result

$$
\frac{S_{k}^{\prime}(n)}{n^{k}}=\sum_{d \mid n} \mu(d) \frac{d^{k}}{n^{k}} g_{k}\left(\frac{n / d-1}{2}\right) .
$$

Case III: $n \equiv 2(\bmod 4)$. Then we can write $n=2 m$ for some odd integer m. Thus for any positive integer x, we have $(x, n)=1$ if and only if $(x, m)=1$
and x is odd. We also observe that for any positive integer $y,(2 y, m)=1$ if and only if $(y, m)=1$. By using Theorem 2.1 and Case II, we have

$$
\begin{aligned}
S_{k}^{\prime}(n)= & \sum\left\{x^{k}: 1 \leq x \leq \frac{n}{2},(x, n)=1\right\} \\
= & \sum\left\{x^{k}: 1 \leq x \leq m,(x, m)=1, x \text { is odd }\right\} \\
= & \sum\left(\left\{x^{k}: 1 \leq x \leq m,(x, m)=1\right\}\right. \\
& \left.\backslash\left\{x^{k}: 1 \leq x \leq m,(x, m)=1, x \text { is even }\right\}\right) \\
= & \sum\left(\left\{x^{k}: 1 \leq x \leq m,(x, m)=1\right\}\right. \\
& \left.\backslash\left\{(2 y)^{k}: 1 \leq 2 y \leq m,(2 y, m)=1\right\}\right) \\
= & \sum\left(\left\{x^{k}: 1 \leq x \leq m,(x, m)=1\right\}\right. \\
& \left.\backslash 2^{k}\left\{y^{k}: 1 \leq y \leq \frac{m}{2},(y, m)=1\right\}\right) \\
= & S_{k}(m)-2^{k} S_{k}^{\prime}(m) \\
= & \sum_{d \mid m} \mu(d) d^{k} g_{k}\left(\frac{m}{d}\right)-2^{k} \sum_{d \mid m} \mu(d) d^{k} g_{k}\left(\frac{m / d-1}{2}\right) \\
= & \sum_{d \mid(n / 2)} \mu(d) d^{k}\left(g_{k}\left(\frac{n}{2 d}\right)-2^{k} g_{k}\left(\frac{n / 2 d-1}{2}\right)\right),
\end{aligned}
$$

as desired.

3. Explicit formulae

In this section, we provide the explicit formulae for $S_{k}(n)$ and $S_{k}^{\prime}(n)$, where $k=1,2$, and 3 , by using the following lemmas. The first lemma is verified by the fact that if f is a multiplicative function and F is an arithmetic function defined by $F(n)=\sum_{d \mid n} f(d)$, then F is also multiplicative [2, p. 109].

Lemma 3.1. For positive integers m and n, we have

$$
\begin{equation*}
\sum_{d \mid n} \mu(d) d^{m}=\psi_{m}(n) \tag{9}
\end{equation*}
$$

where $\psi_{m}(1)=1$ and $\psi_{m}(n)=\prod_{p \mid n}\left(1-p^{m}\right)$ for $n>1$.
Proof. If $n=1$, then we are done. For $n \geq 2$, we write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ as its prime factorization. Since μ is multiplicative, the function f defined by $f(n)=$ $\mu(n) n^{m}$ is multiplicative and so the function F defined by $F(n)=\sum_{d \mid n} \mu(d) d^{m}$ is also multiplicative. Since

$$
F\left(p_{i}^{k_{i}}\right)=\sum_{d \mid p_{i}^{k_{i}}} \mu(d) d^{m}=\mu(1)+\mu\left(p_{i}\right) p_{i}^{m}=1-p_{i}^{m}
$$

for all $1 \leq i \leq r$, we obtain

$$
\sum_{d \mid n} \mu(d) d^{m}=F(n)=\prod_{1 \leq i \leq r} F\left(p_{i}^{k_{i}}\right)=\prod_{p \mid n}\left(1-p^{m}\right)=\psi_{m}(n)
$$

as desired.
Note that $\psi_{1}=\psi$ and so the equation (4) is a special case of Lemma 3.1.
Lemma 3.2. For even positive integer $n>2$, we have
(i) $\phi\left(\frac{n}{2}\right)= \begin{cases}\phi(n) / 2 & \text { if } n \equiv 0(\bmod 4), \\ \phi(n) & \text { if } n \equiv 2(\bmod 4),\end{cases}$
(ii) $\psi_{m}\left(\frac{n}{2}\right)= \begin{cases}\psi_{m}(n) & \text { if } n \equiv 0(\bmod 4), \\ \psi_{m}(n) /\left(1-2^{m}\right) & \text { if } n \equiv 2(\bmod 4)\end{cases}$
for $m \geq 1$.
Proof. If $n \equiv 0(\bmod 4)$, then we can write $n=2^{r} t$ for some positive integers r and t such that $r \geq 2$ and t is odd. Since ϕ is multiplicative, we obtain

$$
\begin{gathered}
\phi\left(\frac{n}{2}\right)=\phi\left(2^{r-1}\right) \phi(t)=\frac{\phi\left(2^{r}\right) \phi(t)}{2}=\frac{\phi(n)}{2} \\
\psi_{m}\left(\frac{n}{2}\right)=\prod_{p \mid 2^{r-1} t}\left(1-p^{m}\right)=\prod_{p \mid 2^{r} t}\left(1-p^{m}\right)=\psi_{m}(n)
\end{gathered}
$$

If $n \equiv 2(\bmod 4)$, then we can write $n=2 t$ for some odd integer t and so

$$
\begin{gathered}
\phi\left(\frac{n}{2}\right)=\phi(t)=\phi(2) \phi(t)=\phi(2 t)=\phi(n), \\
\psi_{m}\left(\frac{n}{2}\right)=\prod_{p \mid t}\left(1-p^{m}\right)=\frac{\prod_{p \mid 2 t}\left(1-p^{m}\right)}{1-2^{m}}=\frac{\psi_{m}(n)}{1-2^{m}} .
\end{gathered}
$$

This completes the proof.
The following example shows that the known formulae for $S_{1}(n)$ in [2, p. 143] and $S_{1}^{\prime}(n)$ in [1] follow from our formulae in Theorem 2.1 and Theorem 2.2, respectively.

Example 3.3. Recall that $g_{1}(n)=n(n+1) / 2$ for all $n \geq 1$. By using Theorem 2.1, (2), and (3), we get

$$
\begin{aligned}
S_{1}(n) & =\sum_{d \mid n} \mu(d) d g_{1}\left(\frac{n}{d}\right) \\
& =\frac{1}{2} \sum_{d \mid n} \mu(d)\left(\frac{n^{2}}{d}+n\right) \\
& =\frac{n \phi(n)}{2}
\end{aligned}
$$

for $n>1$ as desired. To calculate the explicit formula for $S_{1}^{\prime}(n)$ by using Theorem 2.2, we consider three cases for $n>2$ as follows:
Case $I: n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
S_{1}^{\prime}(n) & =\sum_{d \mid(n / 2)} \mu(d) d g_{1}\left(\frac{n}{2 d}\right) \\
& =\frac{1}{8} \sum_{d \mid(n / 2)} \mu(d)\left(\frac{n^{2}}{d}+2 n\right) \\
& =\frac{1}{8}\left(\frac{n^{2} \phi(n / 2)}{n / 2}\right) \quad \text { by }(2) \text { and }(3) \\
& =\frac{n \phi(n)}{8} \quad \text { by Lemma } 3.2(\mathrm{i})
\end{aligned}
$$

Case II: $n \equiv \pm 1(\bmod 4)$.

$$
\begin{aligned}
S_{1}^{\prime}(n) & =\sum_{d \mid n} \mu(d) d g_{1}\left(\frac{n / d-1}{2}\right) \\
& =\frac{1}{8} \sum_{d \mid n} \mu(d)\left(\frac{n^{2}}{d}-d\right) \\
& =\frac{1}{8}\left(\frac{n^{2} \phi(n)}{n}-\psi(n)\right) \quad \text { by }(2) \text { and }(4) \\
& =\frac{1}{8}(n \phi(n)-\psi(n)) .
\end{aligned}
$$

Case III: $n \equiv 2(\bmod 4)$.

$$
\begin{aligned}
S_{1}^{\prime}(n) & =\sum_{d \mid(n / 2)} \mu(d) d\left[g_{1}\left(\frac{n}{2 d}\right)-2 g_{1}\left(\frac{n / 2 d-1}{2}\right)\right] \\
& =\frac{1}{8} \sum_{d \mid(n / 2)} \mu(d)\left(\frac{n^{2}}{2 d}+2 n+2 d\right) \\
& =\frac{1}{8}\left(\frac{n^{2} \phi(n / 2)}{2(n / 2)}+2 \psi\left(\frac{n}{2}\right)\right) \quad \text { by }(2),(3), \text { and }(4) \\
& =\frac{1}{8}(n \phi(n)-2 \psi(n)) \quad \text { by Lemma } 3.2(\mathrm{i}),(\mathrm{ii}) .
\end{aligned}
$$

The next example confirms that the formulae in Theorem 2.1 and Theorem 2.2 are generalization of $S_{2}(n)$ in [5, p. 196] and $S_{2}^{\prime}(n)$ in [1], respectively.

Example 3.4. Recall that $g_{2}(n)=n(n+1)(2 n+1) / 6$ for all $n \geq 1$. By using Theorem 2.1, (2), (3), and (4), we get

$$
S_{2}(n)=\sum_{d \mid n} \mu(d) d^{2} g_{2}\left(\frac{n}{d}\right)
$$

$$
\begin{aligned}
& =\frac{1}{6} \sum_{d \mid n} \mu(d)\left(\frac{2 n^{3}}{d}+3 n^{2}+n d\right) \\
& =\frac{2 n^{2} \phi(n)+n \psi(n)}{6}
\end{aligned}
$$

for $n>1$ as desired. To calculate the explicit formula for $S_{2}^{\prime}(n)$ by using Theorem 2.2, we consider three cases for $n>2$ as follows:
Case $I: n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
S_{2}^{\prime}(n) & =\sum_{d \mid(n / 2)} \mu(d) d^{2} g_{2}\left(\frac{n}{2 d}\right) \\
& =\frac{1}{24} \sum_{d \mid(n / 2)} \mu(d)\left(\frac{n^{3}}{d}+3 n^{2}+2 n d\right) \\
& =\frac{1}{24}\left(\frac{n^{3} \phi(n / 2)}{n / 2}+2 n \psi\left(\frac{n}{2}\right)\right) \quad \text { by }(2),(3), \text { and }(4) \\
& =\frac{n^{2} \phi(n)+2 n \psi(n)}{24} \quad \text { by Lemma } 3.2(i),(\text { ii }) \text { with } \psi_{1}=\psi .
\end{aligned}
$$

Case II: $n \equiv \pm 1(\bmod 4)$.

$$
\begin{aligned}
S_{2}^{\prime}(n) & =\sum_{d \mid n} \mu(d) d^{2} g_{2}\left(\frac{n / d-1}{2}\right) \\
& =\frac{1}{24} \sum_{d \mid n} \mu(d)\left(\frac{n^{3}}{d}-n d\right) \\
& =\frac{n^{2} \phi(n)-n \psi(n)}{24} \quad \text { by }(2) \text { and (4). }
\end{aligned}
$$

Case III: $n \equiv 2(\bmod 4)$.

$$
\begin{aligned}
S_{2}^{\prime}(n) & =\sum_{d \mid(n / 2)} \mu(d) d^{2}\left[g_{2}\left(\frac{n}{2 d}\right)-2^{2} g_{2}\left(\frac{n / 2 d-1}{2}\right)\right] \\
& =\frac{1}{24} \sum_{d \mid(n / 2)} \mu(d)\left(\frac{n^{3}}{2 d}+3 n^{2}+4 n d\right) \\
& =\frac{1}{24}\left(\frac{n^{3} \phi(n / 2)}{2(n / 2)}+4 n \psi\left(\frac{n}{2}\right)\right) \quad \text { by }(2),(3), \text { and }(4) \\
& =\frac{n^{2} \phi(n)-4 n \psi(n)}{24} \quad \text { by Lemma } 3.2(\mathrm{i}),(\text { ii }) \text { with } \psi_{1}=\psi .
\end{aligned}
$$

Finally, we give the formulae for $S_{3}(n)$ and $S_{3}^{\prime}(n)$ as in the following example.
Example 3.5. We show that

$$
S_{3}(n)=\frac{n^{3} \phi(n)+n^{2} \psi(n)}{4} \quad(n>1)
$$

and

$$
S_{3}^{\prime}(n)= \begin{cases}\frac{n^{3} \phi(n)+4 n^{2} \psi(n)}{64} & \text { if } n \equiv 0 \quad(\bmod 4), \\ \frac{n^{3} \phi(n)-2 n^{2} \psi(n)+\psi_{3}(n)}{64} & \text { if } n \equiv \pm 1 \quad(\bmod 4), \quad(n>2) \\ \frac{n^{3} \phi(n)-8 n^{2} \psi(n)+8 \psi_{3}(n) / 7}{64} & \text { if } n \equiv 2 \quad(\bmod 4)\end{cases}
$$

Recall that $g_{3}(n)=n^{2}(n+1)^{2} / 4$ for all $n \geq 1$. By using Theorem 2.1, (2), (3), and (4), we get

$$
\begin{aligned}
S_{3}(n) & =\sum_{d \mid n} \mu(d) d^{3} g_{3}\left(\frac{n}{d}\right) \\
& =\frac{1}{4} \sum_{d \mid n} \mu(d)\left(\frac{n^{4}}{d}+2 n^{3}+n^{2} d\right) \\
& =\frac{n^{3} \phi(n)+n^{2} \psi(n)}{4}
\end{aligned}
$$

for $n>1$ as desired. To calculate the explicit formula for $S_{3}^{\prime}(n)$ by using Theorem 2.2, we consider three cases for $n>2$ as follows:
Case $I: n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
S_{3}^{\prime}(n) & =\sum_{d \mid(n / 2)} \mu(d) d^{3} g_{3}\left(\frac{n}{2 d}\right) \\
& =\frac{1}{64} \sum_{d \mid(n / 2)} \mu(d)\left(\frac{n^{4}}{d}+4 n^{3}+4 n^{2} d\right) \\
& =\frac{1}{64}\left(\frac{n^{4} \phi(n / 2)}{n / 2}+4 n^{2} \psi\left(\frac{n}{2}\right)\right) \quad \text { by }(2),(3), \text { and }(4) \\
& =\frac{n^{3} \phi(n)+4 n^{2} \psi(n)}{64} \quad \text { by Lemma } 3.2(\mathrm{i}), \text { (ii). }
\end{aligned}
$$

Case $I I: n \equiv \pm 1(\bmod 4)$.

$$
\begin{aligned}
S_{3}^{\prime}(n) & =\sum_{d \mid n} \mu(d) d^{3} g_{3}\left(\frac{n / d-1}{2}\right) \\
& =\frac{1}{64} \sum_{d \mid n} \mu(d)\left(\frac{n^{4}}{d}-2 n^{2} d+d^{3}\right) \\
& =\frac{n^{3} \phi(n)-2 n^{2} \psi(n)+\psi_{3}(n)}{64} \quad \text { by }(2),(4), \text { and }(9) .
\end{aligned}
$$

Case III: $n \equiv 2(\bmod 4)$.

$$
S_{3}^{\prime}(n)=\sum_{d \mid(n / 2)} \mu(d) d^{3}\left[g_{3}\left(\frac{n}{2 d}\right)-2^{3} g_{3}\left(\frac{n / 2 d-1}{2}\right)\right]
$$

$$
\begin{aligned}
& =\frac{1}{64} \sum_{d \mid(n / 2)} \mu(d)\left(\frac{n^{4}}{2 d}+4 n^{3}+8 n^{2} d-8 d^{3}\right) \\
& =\frac{1}{64}\left(\frac{n^{4} \phi(n / 2)}{2(n / 2)}+8 n^{2} \psi\left(\frac{n}{2}\right)-8 \psi_{3}\left(\frac{n}{2}\right)\right) \quad \text { by }(2),(3),(4), \text { and }(9) \\
& =\frac{n^{3} \phi(n)-8 n^{2} \psi(n)+8 \psi_{3}(n) / 7}{64} \quad \text { by Lemma } 3.2(\mathrm{i}),(\mathrm{ii})
\end{aligned}
$$

For the last case, we observe that $7 \mid \psi_{3}(n)$ since n is even.
By the same way, the reader can verify any other explicit formula for $S_{k}(n)$ and $S_{k}^{\prime}(n)(k>3)$ by using the formula for $g_{k}(n)$, Lemma 3.1, and Lemma 3.2 as an exercise.

References

[1] J. D. Baum, A number-theoretic sum, Math. Mag. 55 (1982), no. 2, 111-113. https: //doi.org/10.2307/2690056
[2] D. M. Burton, Elementary Number Theory, McGraw-Hill, New York, 2011.
[3] G. Mackiw, A Combinatorial approach to sums of integer powers, Math. Mag. 73 (2000), no. 1, 44-46. https://doi.org/10.1080/0025570X.2000.11996799
[4] P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer-Verlag, New York, 1986. https://doi.org/10.1007/978-1-4613-8620-9
[5] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley \& Sons, New York, 1991.
[6] Thomas J. Pfaff, Deriving a formula for sums of powers of integers, Pi Mu Epsilon Journal 12 (2007), no. 7, 425-430.
[7] H. S. Wilf, Mathematics for the Physical Sciences, Dover Publications, New York, 1978.
Narakorn Rompurk Kanasri
Department of Mathematics
Khon Kaen University
Khon Kaen 40002, Thailand
Email address: naraka@kku.ac.th
Patchara Pornsurat
Department of Mathematics
Khon Kaen University
Khon Kaen 40002, Thailand
Email address: patcharasiggarn@gmail.com
Yanapat Tongron
Department of Mathematics
Khon Kaen University
Khon Kaen 40002, Thailand
Email address: yanapatt@kkumail.com

