Browse > Article
http://dx.doi.org/10.4134/CKMS.c180414

GENERALIZATIONS OF NUMBER-THEORETIC SUMS  

Kanasri, Narakorn Rompurk (Department of Mathematics Khon Kaen University)
Pornsurat, Patchara (Department of Mathematics Khon Kaen University)
Tongron, Yanapat (Department of Mathematics Khon Kaen University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.4, 2019 , pp. 1105-1115 More about this Journal
Abstract
For positive integers n and k, let $S_k(n)$ and $S^{\prime}_k(n)$ be the sums of the elements in the finite sets {$x^k:1{\leq}x{\leq}n$, (x, n) = 1} and {$x^k:1{\leq}x{\leq}n/2$, (x, n) = 1}respectively. The formulae for both $S_k(n)$ and $S^{\prime}_k(n)$ are established. The explicit formulae when k = 1, 2, 3 are also given.
Keywords
arithmetic function; Euler's phi-function; $M{\ddot{o}}bius$ function; $M{\ddot{o}}bius$ inversion formula; sum of power of integers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. D. Baum, A number-theoretic sum, Math. Mag. 55 (1982), no. 2, 111-113. https://doi.org/10.2307/2690056   DOI
2 D. M. Burton, Elementary Number Theory, McGraw-Hill, New York, 2011.
3 G. Mackiw, A Combinatorial approach to sums of integer powers, Math. Mag. 73 (2000), no. 1, 44-46. https://doi.org/10.1080/0025570X.2000.11996799   DOI
4 P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer-Verlag, New York, 1986. https://doi.org/10.1007/978-1-4613-8620-9
5 I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley & Sons, New York, 1991.
6 Thomas J. Pfaff, Deriving a formula for sums of powers of integers, Pi Mu Epsilon Journal 12 (2007), no. 7, 425-430.
7 H. S. Wilf, Mathematics for the Physical Sciences, Dover Publications, New York, 1978.