• 제목/요약/키워드: $LiNi_{1-y}$${Co_y}{O_2}$

검색결과 142건 처리시간 0.028초

리튬 2차 전지용 정극 활물질 $LiCo_{1-x}Ni_{x}O_2$의 충방전 특성 (A Study on charge/discharge characteristics of cathode active material $LiCo_{1-x}Ni_{x}O_2$ for Li rechargeable batteries)

  • 정인성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.228-231
    • /
    • 1996
  • We prepared $LiCo_{1-x}Ni_{x}O_2$ by reacting stoichiometric mixture of LiOH.$H_2O$, $CoCO_3$.$xH_2O$ and $Ni(OH)_2$ (mole ratio respectively) and heating at $850^{\circ}C$ for 5h. We awared through XRD that from 0 to 0.5 at x in $LiCo_{1-x}Ni_{x}O_2$ is well formed for hexagonal structure, but the more $LiCo_{1-x}Ni_{x}O_2$ involve NI, the more hexagonal structure is not well formed. In the result of charge/discharge test, charge/discharge characteristic of $LiCo_{1-x}Ni_{x}O_2$ is similar to that of $LiCoO_2$. Therefore, $LiCo_{1-x}Ni_{x}O_2$ is superior to $LiCoO_2$ for Li secondary battery

  • PDF

$LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 복합 정극의 특성 연구 (A Study on Electrochemical Characteristics of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Mixed Cathode Materials)

  • 김현수;이영호;김성일;문성인;김우성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.318-319
    • /
    • 2005
  • 본 연구에서는 $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 혼합 정극활물질로 사용하여 전극을 제작하고 성능을 평가하였다. $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$$LiCoO_2$의 혼합비에 따른 충방전 거동 및 임피던스 변화를 측정하였다. 각 조성에서의 초기용량은 160 ~ 170 mAh/g 정도였으며, $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 첨가 비율이 증가함에 따라 비용량이 증가하였으나 고율에서의 방전용량은 낮았다.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

LiCo$O_2$$LiCo_{1-x}$$Ni_x$$O_2$고용체의 제조 및 양이온 혼합 현상 (Preparation and cation mixing phenomena of LiCo$O_2$and $LiCo_{1-x}$$Ni_x$$O_2$ solid solutions)

  • 임창성;안홍주;강승민;하정수;고영신
    • 한국결정성장학회지
    • /
    • 제9권6호
    • /
    • pp.601-605
    • /
    • 1999
  • $LiCoO_2$와 고용체 화합물인 $LiCo_{1-x}Ni_XO_2$을 고상반응법을 이용하여 제조하여 XRD, SEM, 입도분석, $^7$Li NMR을 통하여 그 구조적 cation mixing 현상을 조사하였다. 고상반응법으로 합성한 $LiCoO_2$$LiCo_{1-x}$$Ni_x$$O_2$의 미세결정상은 hexagonal layered structure를 보여주었고 전반적인 입도는 니켈의 함량에 따라 증가되었다. 고용체에 있어서 Ni의 함량 분율(x)이 x=0.3, 0.5, 0.7로 Ni의 양이 증가함에 따라 cation mixing 효과가 증가되었다. $^7$Li NMR의 peak frequency는 Ni의 함량이 증가함에 따라 high frequency로 shift되었고 line width는 Ni의 함량에 따라 넓어지는 양상을 보여주었다.

  • PDF

단순화한 연소법에 의해 합성한 LiMn1.92Co0.08O4와 LiNi0.7Co0.3O2 혼합물의 전기화학적 특성 (Electrochemical Properties of LiMn1.92Co0.08O4 and LiNi0.7Co0.3O2 Mixtures Prepared by a Simplified Combustion Method)

  • 송명엽;권익현;김훈욱
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.735-741
    • /
    • 2004
  • 단순화한 연소법에 의해 합성한 $LiMn_{1.92}Co_{0.08}O_4$$LiNi_{0.7}Co_{0.3}O_2$의 혼합물의 전기화학적 성질을 알아보기 위하여, 30분 동안 milling하여 $LiMn_{1.92}Co_{0.08}O_4$-x wt$\%$ $LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41, and 47) 조성의 혼합물을 제조하였다. x=9 조성의 전극이 비교적 큰 초기방전용량(109.9mAh/g at 0.1C)과 좋은 싸이클 성능을 가지고 있었다. 싸이클링에 따른 혼합물 전극의 방전용량 감소는 주로 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화에 기인한다고 생각된다. $LiNi_{0.7}Co_{0.3}O_2$의 퇴화는 $LiMn_{1.92}Co_{0.08}O_4$로부터 용해된 Mn이 $LiNi_{0.7}Co_{0.3}O_2$ 입자를 둘러싸서(coating) 일어나는 것으로 판단된다.

기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구 (Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying)

  • 박상호;신선식;선양국
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

리튬 2차 전지용 정극 활물질 $LiCo_{1-x}Ni_{x}O_2$의 제조와 충방전 특성 (A Study on preparation and chargy/discharge characteristics of cathode active material $LiCo_{1-x}Ni_{x}O_2$ for Li rechargeable batteries)

  • 정인성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.340-342
    • /
    • 1995
  • We prepared $LiCo_{1-x}Ni_{x}O_2$ by reacting stoichiometric mixture of LiOH.$H_2O$, $CoCO_3$.$xH_2O$ and $Ni(OH)_2$(mole ratio respectively) and heating at $850^{\circ}C$ for 5n. In the result of X-ray diffraction analysis, along fluctuation of the function of x in $LiCo_{1-x}Ni_{x}O_2$(003) peak and (104) peak indensities and ratio were varied. We awared through XRD that from 0 to 0.5 at x in $LiCo_{1-x}Ni_{x}O_2$ is well formed for hexagonal structure at one step heat treatment($850^{\circ}C$), but if Ni involve at $LiCo_{1-x}Ni_{x}O_2$ hexagonal structure is not well formed. In the result of charge/discharge tests charge/discharge capacity and effiency is different about various cathode. Therefore, the appropriate charge/discharge method must be selected for good characteristics.

  • PDF

리튬 이차전지용 LiMn1.92Co0.08O4, LiNi1-yCoyO2 의 합성과 그들의 혼합물의 전기화학적 특성 (Syntheses of LiMn1.92Co0.08O4 and LiNi1-yCoyO2 and Electrochemical Properties of their Mixtures for Lithium Secondary Battery)

  • 권익현;김훈욱;송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.62-71
    • /
    • 2004
  • $LiMn_{1.92}Co_{0.08}O_4-x\;wt.%LiNi_{0.7}Co_{0.3}O_2$를 단순화한 연소법에 의하여 합성하고, 그것들의 전기화학적 특성을 조사하였다. 또한 30분동안 밀링하여 준비한 $LiMn_{1.92}Co_{0.08}O_4-x\;wt.%LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41 and 47) 혼합물 전극의 전기화학적 특성을 조사하였다. x=33 조성의 전극이 가장 큰 초기방전용량(132.0mAh/g at 0.1C)을 나타내었다. x=9조성의 전극은 비교적 큰 초기방전용량(109.9mAh/g at 0.1C)과 우수한 싸이클 특성을 나타내었다. 싸이클링에 따른 혼합물 전극의 방전용량의 감소는 주로 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화에 기인한다고 생각된다. 그런데 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화는 $LiMn_{1.92}Co_{0.08}O_4$로부터 용해된 Mn이 $LiNi_{0.7}Co_{0.3}O_2$를 둘러쌈(coating)으로써 야기되는 것으로 생각된다.

리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성 (Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries)

  • 김성근;홍성완;한경식;이홍기;심중표
    • 한국전기전자재료학회논문지
    • /
    • 제21권11호
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.

리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동 (Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure)

  • 황성주;김호진;정연욱;이준형;김정주
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.292-297
    • /
    • 2005
  • 출발원료로 $Li_{2}CO_{3},\;Co_{3}O_{4}$와 NiO를 사용하여 고상반응법으로 $LiMO_{2}(M=Co,Ni)$를 합성하였다. $LiCoO_{2}$는 저온$T=400^{\circ}C$에서 스피넬구조를 형성하고 온도가 증가$(T\ge600^{\circ}C)$되면 층상구조로 상전이 한다. 우리는 열처리 온도와 시간을 변수로 $LiCoO_{2}$의 스피넬구조에서 층상구조로의 상전이 거동을 관찰하였다. 스피넬구조에서 층상구조로의 상전이 속도는 스피넬상의 농도에 1차 비례하고 상전이하는 활성화 에너지는 약 6.76 kcal/mol이다. 출발원료로 스피넬구조인 $Co_{3}O_{4}$ 대신 암염 구조인 CoO를 사용하면 저온$(T=500^{\circ}C)$에서부터 층상구조가 형성되고 스피넬구조는 관찰되지 않는다. $LiNiO_{2}$는 온도가 증가함에 따라 층상구조에서 암염구조로 상전이 한다. $LiNiO_{2}$의 고온상인 암염구조는 저온에서 disordering/ordering에 의해 쉽게 층상구조로 되돌아가는 상전이 거동을 보인다. 반면 $LiCoO_{2}$에서는 층상구조에서 암염구조로의 상전이가 쉽게 일어나지 않는다. 이온반경비 $Li^+/Co^{3+}$ 보다 큰 것이 $LiCoO_{2}$의 층상구조가 고온에서 $LiNiO_{2}$의 층상구조보다 더 안정할 수 있는 이유 중의 하나로 생각된다.