• Title/Summary/Keyword: $LiNi_{1-y}$${Co_y}{O_2}$

Search Result 141, Processing Time 0.033 seconds

A Study on charge/discharge characteristics of cathode active material $LiCo_{1-x}Ni_{x}O_2$ for Li rechargeable batteries (리튬 2차 전지용 정극 활물질 $LiCo_{1-x}Ni_{x}O_2$의 충방전 특성)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.228-231
    • /
    • 1996
  • We prepared $LiCo_{1-x}Ni_{x}O_2$ by reacting stoichiometric mixture of LiOH.$H_2O$, $CoCO_3$.$xH_2O$ and $Ni(OH)_2$ (mole ratio respectively) and heating at $850^{\circ}C$ for 5h. We awared through XRD that from 0 to 0.5 at x in $LiCo_{1-x}Ni_{x}O_2$ is well formed for hexagonal structure, but the more $LiCo_{1-x}Ni_{x}O_2$ involve NI, the more hexagonal structure is not well formed. In the result of charge/discharge test, charge/discharge characteristic of $LiCo_{1-x}Ni_{x}O_2$ is similar to that of $LiCoO_2$. Therefore, $LiCo_{1-x}Ni_{x}O_2$ is superior to $LiCoO_2$ for Li secondary battery

  • PDF

A Study on Electrochemical Characteristics of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Mixed Cathode Materials ($LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 복합 정극의 특성 연구)

  • Kim, Hyun-Soo;Lee, Youn-Ho;Kim, Sung-Il;Moon, Seong-In;Kim, Woo-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.318-319
    • /
    • 2005
  • 본 연구에서는 $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 혼합 정극활물질로 사용하여 전극을 제작하고 성능을 평가하였다. $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$$LiCoO_2$의 혼합비에 따른 충방전 거동 및 임피던스 변화를 측정하였다. 각 조성에서의 초기용량은 160 ~ 170 mAh/g 정도였으며, $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 첨가 비율이 증가함에 따라 비용량이 증가하였으나 고율에서의 방전용량은 낮았다.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

Preparation and cation mixing phenomena of LiCo$O_2$and $LiCo_{1-x}$$Ni_x$$O_2$ solid solutions (LiCo$O_2$$LiCo_{1-x}$$Ni_x$$O_2$고용체의 제조 및 양이온 혼합 현상)

  • 임창성;안홍주;강승민;하정수;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.601-605
    • /
    • 1999
  • $LiCoO_2$and $LiCo_{1-x}$$Ni_x$$O_2$ solid solutions were fabricated by the solid state reaction process. The structural cation mixing phenomena were investigated using XRD, SEM, particle size analysis and $^7$Li NMR,The synthesized LiCoO$_2$ and $LiCo_{1-x}Ni_XO_2$ microcrystallines showed the hexagonal layered structures. Mean particle sizes were increased with the increase of the amount of nickel in the solid solutions. The cation mixing effects were increased as increasing the fraction of nickel(x), x = 0.3, 0.5, 0.7. the peak frequency of $^7$Li NMR was shifted to the higher frequency and the line width increased as increasing the amount of nickel in the solid solutions.

  • PDF

Electrochemical Properties of LiMn1.92Co0.08O4 and LiNi0.7Co0.3O2 Mixtures Prepared by a Simplified Combustion Method (단순화한 연소법에 의해 합성한 LiMn1.92Co0.08O4와 LiNi0.7Co0.3O2 혼합물의 전기화학적 특성)

  • Song, Myoungyoup;Kwon, IkHyun;Kim, Hunuk
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.735-741
    • /
    • 2004
  • $LiMn_{1.92}Co_{0.08}O_4$ and $LiNi_{0.7}Co_{0.3}O_2$ synthesized by a simplified combustion method had good electrochemical properties. Mixtures $LiMn_{1.92}Co_{0.08}O_4$-x wt$\%$ $LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41, and 47) were prepared by milling for 30 min and their electrochemical properties were investigated. The electrode with x=9 had a relatively large first discharge capacity (109.9 mAh/g at 0.1 C) and good cycling performance. The decrease in the discharge capacity of the mixture electrodes with cycling is considered to result mainly from the degradation of $LiNi_{0.7}Co_{0.3}O_2$, caused by coating of $LiNi_{0.7}Co_{0.3}O_2$ with Mn dissolved from $LiMn_{1.92}Co_{0.08}O_4$.

Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying (기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구)

  • 박상호;신선식;선양국
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

A Study on preparation and chargy/discharge characteristics of cathode active material $LiCo_{1-x}Ni_{x}O_2$ for Li rechargeable batteries (리튬 2차 전지용 정극 활물질 $LiCo_{1-x}Ni_{x}O_2$의 제조와 충방전 특성)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.340-342
    • /
    • 1995
  • We prepared $LiCo_{1-x}Ni_{x}O_2$ by reacting stoichiometric mixture of LiOH.$H_2O$, $CoCO_3$.$xH_2O$ and $Ni(OH)_2$(mole ratio respectively) and heating at $850^{\circ}C$ for 5n. In the result of X-ray diffraction analysis, along fluctuation of the function of x in $LiCo_{1-x}Ni_{x}O_2$(003) peak and (104) peak indensities and ratio were varied. We awared through XRD that from 0 to 0.5 at x in $LiCo_{1-x}Ni_{x}O_2$ is well formed for hexagonal structure at one step heat treatment($850^{\circ}C$), but if Ni involve at $LiCo_{1-x}Ni_{x}O_2$ hexagonal structure is not well formed. In the result of charge/discharge tests charge/discharge capacity and effiency is different about various cathode. Therefore, the appropriate charge/discharge method must be selected for good characteristics.

  • PDF

Syntheses of LiMn1.92Co0.08O4 and LiNi1-yCoyO2 and Electrochemical Properties of their Mixtures for Lithium Secondary Battery (리튬 이차전지용 LiMn1.92Co0.08O4, LiNi1-yCoyO2 의 합성과 그들의 혼합물의 전기화학적 특성)

  • Kwon, IkHyun;Kim, HunUk;Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.62-71
    • /
    • 2004
  • $LiMn_{1.92}Co_{0.08}O_4-x\;wt.%LiNi_{0.7}Co_{0.3}O_2$를 단순화한 연소법에 의하여 합성하고, 그것들의 전기화학적 특성을 조사하였다. 또한 30분동안 밀링하여 준비한 $LiMn_{1.92}Co_{0.08}O_4-x\;wt.%LiNi_{0.7}Co_{0.3}O_2$ (x=9, 23, 33, 41 and 47) 혼합물 전극의 전기화학적 특성을 조사하였다. x=33 조성의 전극이 가장 큰 초기방전용량(132.0mAh/g at 0.1C)을 나타내었다. x=9조성의 전극은 비교적 큰 초기방전용량(109.9mAh/g at 0.1C)과 우수한 싸이클 특성을 나타내었다. 싸이클링에 따른 혼합물 전극의 방전용량의 감소는 주로 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화에 기인한다고 생각된다. 그런데 $LiNi_{0.7}Co_{0.3}O_2$의 퇴화는 $LiMn_{1.92}Co_{0.08}O_4$로부터 용해된 Mn이 $LiNi_{0.7}Co_{0.3}O_2$를 둘러쌈(coating)으로써 야기되는 것으로 생각된다.

Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries (리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성)

  • Kim, Sung-Keun;Hong, Sung-Wan;Han, Kyeong-Sik;Lee, Hong-Ki;Shim, Joong-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.