• Title/Summary/Keyword: $L_2-norm$

Search Result 218, Processing Time 0.025 seconds

Decentralized Control for Multimachine Power Systems, with Nonlinear Interconnections and Disturbances

  • Jung Kyu-Il;Kim Kwang-Youn;Yoon Tae-Woong;Jang Gilsoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.270-277
    • /
    • 2005
  • In this paper, a decentralized control problem is considered for multimachine power systems with nonlinear interconnections and disturbances. A direct feedback linearization compensator is employed to cancel most of the nonlinearities, and then a backstepping procedure is applied to deal with the interconnections and to reduce the effects of a disturbance that does not satisfy the matching condition. In this procedure, the disturbance is handled by using a smooth approximation of the signum function. Practical stability is achieved under the assumption that the infinite norm of the disturbance is known. However, even in the case where the infinite norm of the disturbance is not known precisely, the proposed control system still guarantees $L_2$ stability. Furthermore, the origin is globally uniformly asymptotically stable in the absence of the disturbance. A three-machine power system is considered as an application example.

MULTIGRID METHOD FOR TOTAL VARIATION IMAGE DENOISING

  • HAN, MUN S.;LEE, JUN S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.9-24
    • /
    • 2002
  • Total Variation(TV) regularization method is effective for reconstructing "blocky", discontinuous images from contaminated image with noise. But TV is represented by highly nonlinear integro-differential equation that is hard to solve. There have been much effort to obtain stable and fast methods. C. Vogel introduced "the Fixed Point Lagged Diffusivity Iteration", which solves the nonlinear equation by linearizing. In this paper, we apply multigrid(MG) method for cell centered finite difference (CCFD) to solve system arise at each step of this fixed point iteration. In numerical simulation, we test various images varying noises and regularization parameter $\alpha$ and smoothness $\beta$ which appear in TV method. Numerical tests show that the parameter ${\beta}$ does not affect the solution if it is sufficiently small. We compute optimal $\alpha$ that minimizes the error with respect to $L^2$ norm and $H^1$ norm and compare reconstructed images.

  • PDF

Effects of Information on User's Personal Norm and Rule-Violating Behavior in a Recreation Setting (휴양지역(休養地域)에서 이용자(利用者)의 개인규범(個人規範)과 규칙위반(規則違反) 행위(行爲)에 미치는 정보(情報)의 효과(效果))

  • Kim, Sang-Oh;Shelby, Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.251-259
    • /
    • 1996
  • This study was conducted to find out whether information based on norm activation theory affects personal norm and rule-violating behavior in a recreation setting, using the data collected from the Second Campground in Chiri-Mountain National Park in 1994. Of the total 280 questionnaires distributed, 253(90.4%) were usable for data analysis. Results showed that information did not increase awareness of consequences(AC) of their actions or ascription of responsibility(AR) for acts and consequences to themselves, and did not directly decrease the quiet time rule-violating behavior. However, it was found that respondents with high ACR(combination of AC and AR) or personal norms less violated the rule. Management implications of these findings were discussed.

  • PDF

AN IMPROVED GLOBAL WELL-POSEDNESS RESULT FOR THE MODIFIED ZAKHAROV EQUATIONS IN 1-D

  • Soenjaya, Agus L.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.735-748
    • /
    • 2022
  • The global well-posedness for the fourth-order modified Zakharov equations in 1-D, which is a system of PDE in two variables describing interactions between quantum Langmuir and quantum ionacoustic waves is studied. In this paper, it is proven that the system is globally well-posed in (u, n) ∈ L2 × L2 by making use of Bourgain restriction norm method and L2 conservation law in u, and controlling the growth of n via appropriate estimates in the local theory. In particular, this improves on the well-posedness results for this system in [9] to lower regularity.

A Study on the Analysis Parameter Used in Improved EFG Crack Analysis Technique Based on Error Estimate (오차분석을 통한 개선된 EFG 균열해석기법의 해석계수 영향평가)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.703-713
    • /
    • 2002
  • Recently, an improved EFG(Element-Free Galerkin) crack analysis technique, which includes a discontinuous approximation and a singular basis function on the auxiliary supports, was developed. The technique is able to accurately analyze the crack propagation problem without any modification of the analysis model; however, it shows some dependency on the analysis parameters used. In this study, the effect of analysis parameters such as the size of compact support, dilation parameter, the smoothness of shape function around the crack tip, and the number of node using auxiliary supports on the accuracy of solution has been investigated. Through a patch test with a crack, relative L₂ error norm of stresses and the stress intensity factor were computed and compared for various analysis parameters and the results were presented as guidelines for adequate choice of analysis parameters.

A goodness - of - fit test for the exponential distribution with unknown parameters (모수가 미지인 상황에서의 지수분포성 적합도 검정방법)

  • 김부용
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.2
    • /
    • pp.157-170
    • /
    • 1991
  • This article is concerned with the goodness - of - fit test for exponentiality when both the scale and location parameters are unknown. A test procedure based on the $L_1$-norm of discrepancy between the cumulative distribution function and the empirical distribution function is proposed, and the critical values of the test statistic are obtained by Monte Carlo simulations. Also the null distributions of the proposed test statistic are presented for small sample sizes. The power of tests under certain alternative distributions is investigated to compare the proposed test statistic with the well-known EDF test statistics. Our Monte Carlo power studies reveal that the proposed test statistic has good power properties, for moderate-to-large sample sizes, in comparison to other statistics although it is a conservative test.

  • PDF

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong Yang;Jie Liu;Jingsong Xie
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.119-133
    • /
    • 2023
  • Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

A Quantitative Performance Index for an Input Observer (II) - Analysis in Steady-State - (입력관측기의 정량적 성능지표 (II) -정상상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2067-2072
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor performances with respect to modeling error and sensing bias error. The effects of these ill-conditioning factors must be minimized for the robust performance in designing observers. In this paper, the steady-state performance of the closed-loop state and input observer is investigated quantitatively and is represented as the estimation error bounds. The performance indices are selected from these error bounds and are related to the robustness with respect to modeling errors and sensing bias. By considering both transient and steady-state performance, the main performance index is determined as the condition number of the eigenvector matrix based on $L_2$-norm.

Robust $H_{\infty}$ filtering for discrete-time polytopic uncertain systems (이산시간 폴리토프형 불확실성 시스템의 견실 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae;Oh, Do-Chang;Lee, Kap-Rai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.26-33
    • /
    • 2002
  • The design method of robust $H_{\infty}$ filtering for discrete-time uncertain linear systems is investigated in this paper. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type. The objective is to design a stable robust $H_{\infty}$ filter guaranteeing the asymptotic stability of filtering error dynamics and present an $L_2$ induced norm bound analytically for the modified $H_{\infty}$ performance measure. The sufficient condition for the existence of robust $H_{\infty}$ filter and the filter design method are established by LMI(linear matrix inequality) approach, which can be solved efficiently by convex optimization. The proposed algorithm is checked through an example.