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MULTIGRID METHOD FOR TOTAL VARIATION IMAGE
DENOISING

MUN S. HAN AND JUN S. LEE

Abstract. Total Variation(TV) regularization method is effective for reconstructing
“blocky”, discontinuous images from contaminated image with noise. But TV is
represented by highly nonlinear integro-differential equation that is hard to solve.
There have been much effort to obtain stable and fast methods. C. Vogel introduced
“the Fixed Point Lagged Diffusivity Iteration”, which solves the nonlinear equation
by linearizing. In this paper, we apply multigrid(MG) method for cell centered finite
difference (CCFD) to solve system arise at each step of this fixed point iteration.
In numerical simulation, we test various images varying noises and regularization
parameter α and smoothness β which appear in TV method. Numerical tests show
that the parameter β does not affect the solution if it is sufficiently small. We
compute optimal α that minimizes the error with respect to L2 norm and H1 norm
and compare reconstructed images.

1. Introduction

It is well known that recovering an image from a contaminated image is mathe-
matically ill-posed. Rudin, Osher, and Fatemi [13] considered Total Variation(TV)
regularization, which can effectively recover edges of an image and is one of the most
successful regularization approaches. Computational experiments and mathematical
analysis [8] have shown that this approach works well for recovering “blocky” image
that is almost piecewise constant with jump discontinuities or sharp gradients separat-
ing regions where it is nearly constant. But TV regularization includes highly nonlinear
part. Vogel and Oman introduced Lagged Diffusivity Fixed Point iteration method to
linearize nonlinear problem which is very robust [17]. On the other hand, cell centered
finite differences method is one of the most effective method for numerical solution of
second order elliptic boundary value problems[9, 7, 18]. This has been used as the
discretization for the image reconstruction problem. Multigrid methods can be used
to solve the discrete systems arising from certain positive definite elliptic PDEs, like
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Poisson’s equation with O(n) complexity (n is the number of pixels in the images or
unknowns) [12] and its efficiency is shown in [1, 2]. For example, the complexity O(n) of
multigrid is contrast with complexity O(n

3
2 ) of direct band method. Multigrid method

is influenced by choice of prolongation operator. We choose a weighted prolongation
operator for multigrid algorithm applied to CCFD [7, 18]. In this paper, we shall con-
sider TV regularization to present effective denoising formula, Lagged Diffusivity Fixed
Point Iteration method to linearize nonlinear denoising problem which is expressed by
TV regularization, and cell centered finite difference method for discretization and
multigrid method to solve system on each iteration step.

The rest of this paper is organized as follows. In section 2, we introduce Total
Variation Regularization(TVR) and ‘Lagged Diffusivity Fixed Point iteration method’.
In section 3, we introduce cell centered finite difference methods. In section 4, we
introduce multigrid algorithm for it. In section 5, we test several images including
‘Lena’ with varying α and noises. Numerical tests show that the parameter β does not
affect the solution if it is sufficiently small. We consider optimal α that minimizes the
error with respect to L2 norm and H1 norm and compare reconstructed images.

2. Total variation regularization

The relation between noisy image and original image can be expressed mathemati-
cally by

(2.1) z = u + n

where u represents the desired true solution, n represents the noise, and z represents
the observed data. The noise is assumed to be a Gaussian white noise, i.e., the values
u(x, y) are uncorrelated random variables with a normal distribution with mean 0 and
variance σ2 for all (x, y) ∈ Ω and a uniform noise, i.e., the values u(x, y) are uncorrelated
random variables with a uniform distribution on the interval (−2σ, 2σ). It is known
that the image reconstruction is mathematically ill-posed. One needs other suitable
constraint. Rudin, Osher, and Fatemi [13] considered the constrained minimization
problem,

(2.2) min
u

∫

Ω
|∇u| dx subject to ‖ u− z ‖2= σ2,

where the parameter σ describes the magnitude of the noise n in the data in the
model equation (2.1). Here Ω is a bounded, convex region in d-dimensional space, | · |
denotes the Euclidean norm in Rd, and ‖ · ‖ denotes the norm on L2(Ω). Vogel et al.
[17] consider a closely related problem - the unconstrained minimization of the TV-
Penalized least squares functional instead of imposing the constraint explicitly, which
is described as follows:

(2.3) f(u) =
1
2
‖ u− z ‖2 +α Jβ(u),
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where

(2.4) Jβ(u) =
∫

Ω

√
|∇u|2 + β2 dx

and α, β are (typically small) positive parameters. The parameter α controls the
tradeoff between goodness of fit to the data, as measured by ‖ u−z ‖, and the variability
of the solution, measured by Jβ(u). When β = 1, Jβ(u) represents the surface area of the
graph of u, while β = 0 gives the total variation of u. When β = 0, TV-penalized least
squares can be viewed as a penalty method [11] to solve the constrained problem (2.2).
The penalty parameter α in (2.3) is inversely proportional to the Lagrange multiplier
for (2.2). This penalty approach is standard in the inverse problems community, and is
commonly referred to as Tikhonov regularization. Provided the parameters are selected
appropriately, the solutions obtained by these two methods are identical. However, from
a computational standpoint, unconstrained problems are much easier to implement than
constrained problems. To minimize f(u) in (2.3), we will need its gradient. By using
integration by parts with Neumann boundary condition on (2.3), it can be shown that
the gradient of the TV functional is

∇TV (u) = −∇ ·
(

∇u√
|∇u|2 + β2

)
.

Thus, the first order optimality condition for the problem (2.3) is given by

(2.5)
∇f(u) = g(u) = −α∇ · ( ∇u√

|∇u|2 + β2
) + u− z = 0, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω.

This is what we need to solve to find the restored image u. C. Vogel et al. [17] propose
the Fixed Point Lagged Diffusivity Iteration to solve the optimality equation (2.5).
This method consists in linearizing the nonlinear differential term in (2.5) by lagging
the diffusion coefficient ( 1√

|∇u|2+β2
) behind one iteration. Thus uk+1 is obtained as the

solution to the linear integro differential equation

(uk+1 − α∇ · ( ∇uk+1

√
|∇uk|2 + β2

)) = z.

This can be interpreted within the framework of generalized Weiszfeld’s methods, as
introduced in [15]. As proved in that paper, this method is monotonically convergent,
in the sense that the objective function evaluated at the iterates forms a monotoni-
cally decreasing sequence, and that the convergence rate as linear. While the rate of
convergence is only linear, the iteration seems to be globally convergent (i.e., it always
converges, no matter what the initial guess). Moreover, the convergence is far more
rapid than that of gradient descent (see [17]). In practice, this method is very robust.
Thus we will apply this method for our purpose.
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3. Cell-centered finite difference discretization for TVR

Here, we briefly introduce CCFD. We assume that ρ(∇u) =
1√

|∇u|2 + β2
are known.

Consider the linearized model problem :

(3.1)
ul+1 −∇ ·

(
ρ(∇ul)∇ul+1

)
= z in Ω,

∂ul+1

∂n
= 0 on ∂Ω,

where Ω is the unit square. Let Nx and Ny denote the number of equispaced partitions
in the x and y directions where Nx = Ny = 2k for k = 1, 2, . . . , m and hx = 1

Nx
,

hy = 1
Ny

. For simplicity, let N = Nx = Ny , h = hx = hy. Then the total number of
cells(subsquare in Ω) is given by N ×N . Let {Ωk} and Ωk

ij , i, j = 0, . . . , N − 1 denote
subdivisions and cell for level k. The cell centers are given by (xi, yi) where

xi = (i− 1
2
)h,

yj = (j − 1
2
)h.

The midpoints of the cell edges are given by (xi± 1
2
, yj) and (xi, yj± 1

2
), where

(3.2)
xi± 1

2
= xi ± h

2
,

yj± 1
2

= yj ± h

2
.

Let Vk denote the space of functions that are piecewise constant on each cell for
k = 1, 2, . . . , m. CCFD is obtained by first integrating (3.1) formally against test
functions φij on Vk, where φij = 1 on Ωk

ij and φij = 0 elsewhere. Integrating by parts,
we obtain

(3.3)
∫

Ωk
ij

ul+1dΩ−
∫

∂Ωk
ij

ρ(∇ul)
∂ul+1

∂n
ds =

∫

Ωk
ij

z dx

for i, j = 1, . . . , n. Now we will approximate the normal derivative
∂ul+1

∂n
on the edges

by the difference quotient of a function u ∈ Vk. Then we have

ρ(∇ul)i,j+ 1
2

ul+1
i,j+1 − ul+1

i,j

h
,

where h = hk = 1/2k, and ul+1
i,j = ul+1(xi, yj) (and similarly for other subscripted

u). Similarly, we obtain others normal derivatives ∂ul+1

∂n and the diffusion coefficients
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(i1, j1) (i, j1) (i1, j1)

(i1, j) (i, j) (i1, j)
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(I2, J
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Figure 1. Elements Ek
i,js and their subdivision ; I1 = I − 1, J1 = J + 1 , etc.

ρ(∇ul)i+ 1
2
,j on the common edges. Next, we approximate the third term in (3.3) as

follows by using mid-point quadrature rule:

(3.4)
∫

Ωk
ij

ul+1dΩ = ul+1
i,j h2.

We have finite difference equations as follows:

(3.5)

[
ρ(∇ul)i− 1

2
,j + ρ(∇ul)i+ 1

2
,j + ρ(∇ul)i,j− 1

2
+ ρ(∇ul)i,j+ 1

2
+ 4h2

]
ul+1

i,j

−ρ(∇ul)i− 1
2
,ju

l+1
i−1,j − ρ(∇ul)i+ 1

2
,ju

l+1
i+1,j

−ρ(∇ul)i,j− 1
2
ul+1

i,j−1 − ρ(∇ul)i,j+ 1
2
ul+1

i,j+1 = h2zi,j .

When one of the edges coincides with the boundary of Ω, consider Neumann boundary
condition, i.e. ∂u

∂n = 0 on ∂Ω. After dividing the resulting equation by h2, we obtain a
system of linear equation of the form

(3.6) Ak(∇ul) ul+1 = z

where Ak(∇ul) is a typical sparse, N2×N2 symmetric, positive definite matrix similar
to those arising in the vertex finite difference method.
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4. Multigrid algorithm for cell-centered method

Our scheme is the fixed point lagged diffusivity iteration i.e., we solve the nonlin-
ear model equation by linearizing and updating ul+1 from solving the linear equation
A(∇ul)ul+1 = z. So, here in this section, we consider the linear multigrid for the cell-
centered finite difference method and state some results on the mutigrid algorithm. Let
{Vk} be the sequence of function space, for k = 1, 2, . . . , J . We define two quadratic
forms Ak(·, ·) and (·, ·)k on Vk × Vk by

(u, v)k = h2
k

n∑

i,j

ui,jvi,j

and

Ak(u, v) = (Aku, v) = h2
k

n∑

i,j

(Aku)i,jvi,j .

We assume a certain prolongation operator Ik
k−1 : Vk−1 → Vk for k = 2, . . . , J and

define the restriction operator Ik−1
k : Vk → Vk−1 as its adjoint with respect to (·, ·) :

(Ik−1
k u, v) = (u, Ik

k−1), ∀u ∈ Vk, v ∈ Vk−1.

Multigrid algorithm gives rise to iterative procedures for the solution u ∈ Vk satisfying
(3.6). Let {Rk} be a sequence of linear smoothing operators Rk : Vk → Vk for k =
2, . . . , J and set

R
(l)
k =

{
Rk, if l is odd,

RT
k , if l is even.

Let Kk = I − RkAk on Vk. Then we note K∗
k = I − RT

k Ak. Here, ‘T ‘ and ‘ ∗ ‘ denote
adjoint with respect to (·, ·)k and Ak(·, ·), respectively. Let Bk : Vk → Vk be multigrid
operator. Now we will define multigrid algorithm as follows :

Multigrid Algorithm V(m,m)

Set B1 = A−1
1 . Assume that Bk−1 has been defined and define Bkz for z ∈ Vk as follows

:
Step 1.: Set v0 = 0 and q0 = 0.
Step 2. (Pre - relaxation): Define vi for i = 1, 2, . . . , m by

vi = vi−1 + Ri
k(z −Akv

i−1).

Step 3.: Define wm = vm + Ik
k−1q and q is defined by

q = Bk−1[Ik−1
k (z −Akv

m)].

Step 4. (Post - relaxation): Define wi for i = m + 1, . . . , 2m by

wi = wi−1 + R
(i+m)
k (z −Akw

i−1).
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Step 5.: Set Bkz = w2m.

Here, m is the number of smoothings which may vary depending on k but we consider
the fixed m = 1. For the smoother, we will adopt Gauss-Seidel method. For the prolon-
gation operator, we will use the bilinear prolongation. Recently, Kwak[7] devised a new
prolongation and showed V -cycle multigrid convergence. The bilinear prolongation has
similar properties as that in [7]. Let Ωk−1

i,j be a cell at level k− 1 and uk−1
i,j be the value

at the center of Ωk−1
i,j . Let uk+1

I,J be the value at the upper right subcell of Ωk−1
i,j , uk+1

I,J+1

be the value at the upper left subcell of Ωk−1
i,j+1 , uk+1

I+1,J be the value at the lower right
subcell of Ωk−1

i+1,j , and uk+1
I+1,J+1 be the value at the lower left subcell of Ωk−1

i+1,j+1. Define
Ik
k−1 : Vk−1 → Vk by uk = Ik

k−1u
k−1 as follows :

uk
I,J =

9uk−1
i,j + 3ui,j+1 + 3ui+1,j + ui+1,j+1

16
,

uk
I,J+1 =

3uk−1
i,j + 9ui,j+1 + 3ui+1,j + ui+1,j+1

16
,

uk
I+1,J =

3uk−1
i,j + ui,j+1 + 9ui+1,j + 3ui+1,j+1

16
,

uk
I+1,J+1 =

uk−1
i,j + 3ui,j+1 + 3ui+1,j + 9ui+1,j+1

16
.

Now we consider the generation of Ak(∇ul) for k = 1, . . . , J . At the top level, i.e.,
k = J , we will generate ρ(∇ul)i,j+ 1

2
, ρ(∇ul)i,j− 1

2
, ρ(∇ul)i+ 1

2
,j and ρ(∇ul)i− 1

2
,j+ 1

2
from

neighboring points of ul
i,j at the level J as in the previous discussion. At the next level

k = J − 1, we first generate ul
i,j at level k = J − 1 from ul

i,j at level k = J by using the
projection operator Ik−1

k which is defined as the transpose of the prolongation operator
Ik
k−1. In this way, we will construct Ak(∇ul) for k = 1, . . . , J .

5. Numerical result

In implementation, one have to compute the diffusion coefficient ρ(∇u) = α/
√

β2 + |∇u|2
from the known date u.

|∇ui− 1
2
,j |2 = (

∂

∂x
ui− 1

2
,j)

2 + (
∂

∂y
ui− 1

2
,j)

2.

First, we approximate each partial derivatives as follows:

∂

∂x
ui− 1

2
,j ≈

ui−1,j − ui,j

h
,

∂

∂y
ui− 1

2
,j ≈

1
2
(
ui,j+1 − ui,j−1

2h
+

ui−1,j+1 − ui−1,j−1

2h
).
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ui−1,j−1 ui,j−1 ui+1,j−1

ui−1,j ui,j ui+1,j

ui−1,j+1 ui,j+1 ui+1,j+1

ρ(∇u)i− 1
2 ,j

ρ(∇u)i,j− 1
2

ρ(∇u)i+ 1
2 ,j

ρ(∇u)i,j+ 1
2

Figure 2. cell-centers ui,j and the diffusion ρ(∇u)i,j+ 1
2
, etc.

Then we can get ρ(∇u)i− 1
2
,j . Similarly, we have ρ(∇u)i+ 1

2
,j , ρ(∇u)i,j− 1

2
, ρ(∇u)i,j+ 1

2

on the common edges.
All the images in this experiment have 256 × 256 pixels and are black and white

images. We performed an experiment with original pictures ( Figure 4-(a) and 6-(a))
and contaminated image with noise ( Figure 4-(b), 5-(b), 6-(b) and 7-(b)). We consider
pictures with Gaussian noise of σ = 10 and σ = 20.

For the parameter β, numerical results show that β does changes little only if it is
small enough(β is less than 10−3). For example in Figure 3, we present the recovered
images fixed α = 8×10−3 varying β = 10−3, 10−5, 10−7, 10−9 and they are almost same.
Since β is not sensitive, we performed experiment with fixed β = 10−6.

So, hereafter, we consider the optimality of α. We present recovered images with α
which minimizes the L2 and H1 error between the original image and the recovered
image. In Figure 4 ∼ 7, we compare images with all αs which are recovered by using
the L2-norm with those obtained by the gradient norm. Here, we assume that we know
the original images and noise is Gaussian noise.
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Figure Gaussian noise Gaussian noise
number of σ = 10 of σ = 20

L2 Figure 4-(c) and 5-(c) 6.5× 10−3 3.0× 10−2

norm Figure 6-(c) and 7-(c) 2.0× 10−3 1.5× 10−2

H1 Figure 4-(d) and 5-(d) 1.55× 10−2 5.5× 10−2

norm Figure 6-(d) and 7-(d) 1.8× 10−2 5.0× 10−2

Table 1. the optimal values of α according to the amount of noise

Figure 4-(a) is original Lena and Figure 4-(b) is noisy image (with Gaussian noise of
σ = 10). Figure 4-(c) and Figure 4-(d) are denoised images with optimal αs in L2 norm
and gradient norm sense.
Figure 5-(a) is original Lena and Figure 5-(b) is noisy image (with Gaussian noise of
σ = 20). Figure 5-(c) and Figure 5-(d) are denoised images with optimal αs in L2 norm
and gradient norm sense.

Figure 4-(d) and 5-(d) are more clear than Figure 4-(c) and 5-(c). Figure 6-(a) is
original Lab member’s picture and Figure 6-(b) is noisy image (with Gaussian noise of
σ = 10). Figure 6-(c) and Figure 6-(d) are denoised image with optimal α in L2 norm
and gradient norm sense.
Figure 7-(a) is original Lab member’s picture and Figure 7-(b) is noisy image (with
Gaussian noise of σ = 20). Figure 7-(c) and Figure 7-(d) are denoised image with
optimal α in L2 norm and gradient norm sense.

All optimal values of αs at each picture are different. But they follow a pattern. The
optimal value of α is directly proportional to the amount of noise (See Table 1). In the
process of denoising an incident occur. A sharp and delicate edges tend to blunt. Our
denoising experiment is more effective board part (for example, Lena’s shoulder and
background, and Word image (See Figure 4, 5, 6, 7) than delicate part (for example,
hair of Lena in Figure 4 ∼ 7.
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Figure 3. (a) Upper left is original Lena Image. (b) Upper right is
noisy image with Gaussian noise of σ = 20. (c) α = 8 × 10−3, β =
1×10−3 (d) α = 8×10−3, β = 1×10−5 (e) α = 8×10−3, β = 1×10−7

(f) α = 8× 10−3, β = 1× 10−9.
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Figure 4. (a)Upper left is original Lena Image. (b)Upper right is
noisy image with Gaussian noise of σ = 10. (c)Lower left is de-
noising image with optimal values α = 6.5 × 10−3, β = 10−6 in L2

norm sense. (d)Lower right is denoising image with optimal valuesα =
15.5× 10−3, β = 10−6 in H1 norm sense.
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Figure 5. (a) Upper left is original Lena Image. (b) upper right is noisy
image with Gaussian noise of σ = 20. (c) Lower left is denoising image
with optimal values α = 3×10−2, β = 10−6 in L2 norm sense. (d) Lower
right is denoising image with optimal values α = 5.5× 10−2, β = 10−6

in H1 norm sense.
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Figure 6. (a)Upper left is original word Image. (b)Upper right is noisy
image with Gaussian noise of σ = 10. (c)Lower left is denoising image
with optimal values α = 2.×10−3, β = 10−6 in L2 norm sense. (d)Lower
right is denoising image with optimal valuesα = 1.8 × 10−2, β = 10−6

in H1 norm sense.
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Figure 7. (a) Upper left is original word Image. (b) upper right is noisy
image with Gaussian noise of σ = 20. (c) Lower left is denoising image
with optimal values α = 1.5 × 10−2, β = 10−6 in L2 norm sense. (d)
Lower right is denoising image with optimal values α = 5.× 10−2, β =
10−6 in H1 norm sense.
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