• Title/Summary/Keyword: $L_2$ tracking performance

Search Result 31, Processing Time 0.034 seconds

Feedback-Based Iterative Learning Control for MIMO LTI Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.269-277
    • /
    • 2008
  • This paper proposes a necessary and sufficient condition of convergence in the $L_2$-norm sense for a feedback-based iterative learning control (ILC) system including a multi-input multi-output (MIMO) linear time-invariant (LTI) plant. It is shown that the convergence conditions for a nominal plant and an uncertain plant are equal to the nominal performance condition and the robust performance condition in the feedback control theory, respectively. Moreover, no additional effort is required to design an iterative learning controller because the performance weighting matrix is used as an iterative learning controller. By proving that the least upper bound of the $L_2$-norm of the remaining tracking error is less than that of the initial tracking error, this paper shows that the iterative learning controller combined with the feedback controller is more effective to reduce the tracking error than only the feedback controller. The validity of the proposed method is verified through computer simulations.

Galileo BOC(1,1) Signal Tracking using GPS/Galileo Software Receiver

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.285-289
    • /
    • 2006
  • In this paper, a design and implementation of GPS/Galileo software receiver is given. As a GPS receiver, it is able to perform every function of receiver such as acquisition, code and carrier tracking, navigation bit extraction, navigation data decoding, pseudorange calculations, and position calculations. A method to acquire and track the Galileo BOC(1,1) signal is also required because the correlation of BOC(1,1) signal has multiple peaks different from that of GPS signal. Therefore, a method to detect the main-peak in correlation function of BOC signal is required to avoid false acquisition. In this paper, very-early, very late correlation is implemented to track the correct main peak. The performance of implemented GPS/Galileo software receiver with BOC(1,1) signal tracking feature is evaluated with GPS/Galileo IF signal generator.

  • PDF

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

GPS L1, L2C Signal Acquisition Performance of GPS Software Receiver with respect to Pseudolite Pulsing Scheme (의사위성의 펄싱 방법에 대한 GPS L2C 신호획득 성 소능프분트석웨어 수신기의 L1, L2C 신호획득 성능분석)

  • Kwon, Keum-Cheol;Yand, Cheol-Kwan;Shim, Duk-Sun;Chung, Tae-Sang;Kee, Chand-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.16-26
    • /
    • 2012
  • Pseudolites are ground-based transmitters that can be configured to emit GPS-like signals for enhancing the GPS by providing increased accuracy, integrity, and availability. However, a pseudolite (PL) can interfere with GPS satellite signals while it is transmitting or cause saturation to automatic gain control circuit. To solve these problems pulsing scheme is used, which transmits PL signal during a short period of time. In this paper the effect of the number of PL and pulsing scheme on the software GPS L1 and L2C signal acquisition performance is studied for the three pulsing schemes such as static pulsing, sweep pulsing, and pseudo random pulsing. For GPS L1 signal, static pulsing shows the best signal acquisition and tracking performance with one PL, and random pulsing shows the best performance with more than or equal to two PLs. For GPS L2C signal, all three pulsing schemes show the similar signal acquisition and tracking performance, but static pulsing shows a little better performance. For GPS L1 and L2C signals, software GPS receivers can do positioning with up to three PLs.

Evaluation of Tracking Performance: Focusing on Improvement of Aiming Ability for Individual Weapon (개인화기 조준 능력 향상 관점에서의 추적 기법의 성능평가)

  • Kim, Sang Hoon;Yun, Il Dong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.481-490
    • /
    • 2013
  • In this paper, an investigation of weapon tracking performance is shown in regard to improving individual weapon performance of aiming objects. On the battlefield, a battle can last only a few hours, sometimes it can last several days until finished. In these long-lasting combats, a wide variety of factors will gradually lower the visual ability of soldiers. The experiments were focusing on enhancing the degraded aiming performance by applying visual tracking technology to roof mounted sights so as to track the movement of troops automatically. In order to select the optimal algorithm among the latest visual tracking techniques, performance of each algorithm was evaluated using the real combat images with characteristics of overlapping problems, camera's mobility, size changes, low contrast images, and illumination changes. The results show that VTD (Visual Tracking Decomposition)[2], IVT (Incremental learning for robust Visual Tracking)[7], and MIL (Multiple Instance Learning)[1] perform the best at accuracy, response speed, and total performance, respectively. The evaluation suggests that the roof mounted sights equipped with visual tracking technology are likely to improve the reduced aiming ability of forces.

Development of High power Threat Signal Simulator and Interfacing Tracking Radar (고출력 위협신호 모의장치 개발 및 추적레이다 연동)

  • Kwak, Yong-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2022
  • In this study, in order to test the performance of the aircraft system, a threat signal simulator that can transmit a signal similar to the actual threat to the aircraft under test with high power was designed. The high-power threat signal simulator should be able to transmit broadband (UHF band, L band, S band, X band) communication signals and radar signals, and control to transmit signals accurately directed to the aircraft through interfacing tracking radar. The signal strength of the developed equipment is 63 dBm to 93 dBm or more depending on type of signal, and the tracking precision is less than 0.1 degree, which satisfies the required performance. And it was confirmed that the antenna of the high-power threat signal simulator can accurately direct the signal to the aircraft position through the tracking radar interfacing.

Maneuvering detection and tracking in uncertain systems (불확정 시스템에서의 기동검출 및 추적)

  • Yoo, K. S.;Hong, I. S.;Kwon, O. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.120-124
    • /
    • 1991
  • In this paper, we consider the maneuvering detection and target tracking problem in uncertain linear discrete-time systems. The maneuvering detection is based on X$^{2}$ test[2,71, where Kalman filters have been utilized so far. The target tracking is performed by the maneuvering input compensation based on a maximum likelihood estimator. KF has been known to diverge when some modelling errors exist and fail to detect the maneuvering and to track the target in uncertain systems. Thus this paper adopt the FIR filter[l], which is known to be robust to modelling errors, for maneuvering detection and target tracking problem. Various computer simulations show the superior performance of the FIR filter in this problem.

  • PDF

LQR control of Wind Turbine (풍력터빈의 LQR 제어)

  • Nam, Yoon-su;Jo, Jang-whan;Lim, Chang-Hee;Park, Sung-su;Bottasso, Carlo L.
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.

Design of the L-band Rotary Joint in Ring Contact Type to Improve Signal Insertion Loss (삽입손실 개선을 위한 링 접촉식 구조의 L대역 로터리조인트 설계)

  • Na, Jae-Hyun;Roh, Don-Suk;Kim, Dong-Gil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This paper deals with the design of the L-band rotary joint, which is a core part of the tracking radar system. The rotary joint is a part that is mounted on the rotating parts of the tracking system antenna, which smoothly transmits RF signals with minimizing signal insertion loss. To improve the insertion loss of rotary joint, 1) dielectric materials, 2) design of distribution ring and 3)dielectric shape are studied. The performance of proposed rotary joint is compared with the conventional product. The prototype rotary joint showed a max insertion loss of 0.68dB, that is improved about 46% compare with conventional product which insertion loss was 1.26dB.

Target-Tracking System for Mobile Surveillance Robot Using CAMShift Image Processing Technique (CAMShift 영상 처리 기법을 이용한 기동형 경계 로봇의 목표추적 시스템)

  • Seo, Bong-Cheol;Kim, Sung-Soo;Lee, Dong-Youm
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.129-136
    • /
    • 2014
  • Target-tracking systems are important for carrying out effective surveillance missions using mobile surveillance robots. In this paper, we propose a target-tracking algorithm using camera image data for a three-axis mobile surveillance robot and carry out an actual hardware test for verifying the proposed algorithm. The heading direction vector of a camera system is deduced from the position error between the viewfinder center and the object center in a camera image. The position error is obtained using the CAMShift(Continuously Adaptive Mean Shift) algorithm, an image processing technique. The performance test of an actual three-axis mobile surveillance robot was carried out for verifying the proposed target-tracking algorithm in a real environment.