• Title/Summary/Keyword: $L_1$-pointwise 1-type

Search Result 6, Processing Time 0.021 seconds

CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1345-1356
    • /
    • 2013
  • In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy $L_1G=f(G+C)$ for some constant vector $C{\in}\mathbb{E}^3$ and smooth function $f$, where $L_1$ denotes the Cheng-Yau operator.

MERIDIAN SURFACES IN 𝔼4 WITH POINTWISE 1-TYPE GAUSS MAP

  • Arslan, Kadri;Bulca, Betul;Milousheva, Velichka
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.911-922
    • /
    • 2014
  • In the present article we study a special class of surfaces in the four-dimensional Euclidean space, which are one-parameter systems of meridians of the standard rotational hypersurface. They are called meridian surfaces. We show that a meridian surface has a harmonic Gauss map if and only if it is part of a plane. Further, we give necessary and sufficient conditions for a meridian surface to have pointwise 1-type Gauss map and find all meridian surfaces with pointwise 1-type Gauss map.

Classifications of Tubular Surface with L1-Pointwise 1-Type Gauss Map in Galilean 3-space 𝔾3

  • Kisi, Ilim;Ozturk, Gunay
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.167-177
    • /
    • 2022
  • In this manuscript, we handle a tubular surface whose Gauss map G satisfies the equality L1G = f(G + C) for the Cheng-Yau operator L1 in Galilean 3-space 𝔾3. We give an example of a tubular surface having L1-harmonic Gauss map. Moreover, we obtain a complete classification of tubular surface having L1-pointwise 1-type Gauss map of the first kind in 𝔾3 and we give some visualizations of this type surface.

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.133-144
    • /
    • 2017
  • In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.

SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.935-949
    • /
    • 2013
  • In this paper, we study surfaces in $\mathb{E}^3$ whose Gauss map G satisfies the equation ${\Box}G=f(G+C)$ for a smooth function $f$ and a constant vector C, where ${\Box}$ stands for the Cheng-Yau operator. We focus on surfaces with constant Gaussian curvature, constant mean curvature and constant principal curvature with such a property. We obtain some classification and characterization theorems for these kinds of surfaces. Finally, we give a characterization of surfaces whose Gauss map G satisfies the equation ${\Box}G={\lambda}(G+C)$ for a constant ${\lambda}$ and a constant vector C.

A GENERIC RESEARCH ON NONLINEAR NON-CONVOLUTION TYPE SINGULAR INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Guller, Ozge Ozalp;Ibikli, Ertan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.545-565
    • /
    • 2016
  • In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: $$T_{\lambda}(f;x)={\large\int_{\Omega}}K_{\lambda}(t,x,f(t))dt,\;x{\in}{\Psi},\;{\lambda}{\in}{\Lambda}$$, where ${\Psi}$ = and ${\Omega}$ = stand for arbitrary closed, semi-closed or open bounded intervals in ${\mathbb{R}}$ or these set notations denote $\mathbb{R}$, and ${\Lambda}$ is a set of non-negative numbers, to the function $f{\in}L_{p,{\omega}}({\Omega})$, where $L_{p,{\omega}}({\Omega})$ denotes the space of all measurable functions f for which $\|{\frac{f}{\omega}}\|^p$ (1 ${\leq}$ p < ${\infty}$) is integrable on ${\Omega}$, and ${\omega}:{\mathbb{R}}{\rightarrow}\mathbb{R}^+$ is a weight function satisfying some conditions.