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MERIDIAN SURFACES IN E
4 WITH

POINTWISE 1-TYPE GAUSS MAP

Kadri Arslan, Betül Bulca, and Velichka Milousheva

Abstract. In the present article we study a special class of surfaces in
the four-dimensional Euclidean space, which are one-parameter systems
of meridians of the standard rotational hypersurface. They are called
meridian surfaces. We show that a meridian surface has a harmonic
Gauss map if and only if it is part of a plane. Further, we give necessary
and sufficient conditions for a meridian surface to have pointwise 1-type
Gauss map and find all meridian surfaces with pointwise 1-type Gauss
map.

1. Introduction

The study of submanifolds of Euclidean space or pseudo-Euclidean space
via the notion of finite type immersions began in the late 1970’s with the
papers [6, 7] of B.-Y. Chen and has been extensively carried out since then. An
isometric immersion x : M → E

m of a submanifold M in Euclidean m-space
E
m is said to be of finite type [6] if x identified with the position vector field

of M in E
m can be expressed as a finite sum of eigenvectors of the Laplacian

∆ of M , i.e.,

x = x0 +

k
∑

i=1

xi,

where x0 is a constant map, x1, x2, . . . , xk are non-constant maps such that
∆xi = λixi, λi ∈ R, 1 ≤ i ≤ k. If λ1, λ2, . . . , λk are different, then M is said to
be of k-type. Many results on finite type immersions have been collected in the
survey paper [8]. Similarly, a smooth map φ of an n-dimensional Riemannian
manifold M of Em is said to be of finite type if φ is a finite sum of Em-valued
eigenfunctions of ∆. The notion of finite type immersion is naturally extended
to the Gauss map G on M in Euclidean space [10]. Thus, a submanifold M of
Euclidean space has 1-type Gauss map G, if G satisfies ∆G = µ(G+C) for some
µ ∈ R and some constant vector C (of [2], [3], [4], [13]). However, the Laplacian
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of the Gauss map of some typical well-known surfaces such as the helicoid, the
catenoid and the right cone in the Euclidean 3-space E

3 takes a somewhat
different form, namely, ∆G = λ(G+C) for some non-constant function λ and
some constant vector C. Therefore, it is worth studying the class of surfaces
satisfying such an equation. A submanifold M of the Euclidean space E

m is
said to have pointwise 1-type Gauss map if its Gauss map G satisfies

(1) ∆G = λ(G+ C)

for some non-zero smooth function λ on M and some constant vector C [11].
A pointwise 1-type Gauss map is called proper if the function λ defined by (1)
is non-constant. A submanifold with pointwise 1-type Gauss map is said to be
of the first kind if the vector C in (1) is zero. Otherwise, the pointwise 1-type
Gauss map is said to be of the second kind ([9], [11], [14], [15]). In [11] M. Choi
and Y. Kim characterized the minimal helicoid in terms of pointwise 1-type
Gauss map of the first kind. Also, together with B. Y. Chen, they proved that
surfaces of revolution with pointwise 1-type Gauss map of the first kind coincide
with surfaces of revolution with constant mean curvature [9]. Moreover, they
characterized the rational surfaces of revolution with pointwise 1-type Gauss
map. In [17] D. Yoon studied Vranceanu rotation surfaces in Euclidean 4-space
E
4. He obtained classification theorems for the flat Vranceanu rotation surfaces

with 1-type Gauss map and an equation in terms of the mean curvature vector
[16]. For the general case see [1].

The study of meridian surfaces in the Euclidean 4-space E
4 was first intro-

duced by G. Ganchev and the third author in [12]. The meridian surfaces are
one-parameter systems of meridians of the standard rotational hypersurface in
E
4. In this paper we investigate the meridian surfaces with pointwise 1-type

Gauss map. We give necessary and sufficient conditions for a meridian sur-
face to have pointwise 1-type Gauss map and find all meridian surfaces with
pointwise 1-type Gauss map of first and second kind.

2. Preliminaries

In the present section we recall definitions and results of [5]. Let x : M →
E
m be an immersion from an n-dimensional connected Riemannian manifold

M into an m-dimensional Euclidean space E
m. We denote by 〈, 〉 the metric

tensor of Em as well as the induced metric on M. Let ∇′ be the Levi-Civita
connection of Em and ∇ the induced connection on M . Then the Gauss and
Weingarten formulas are given, respectively, by

∇′

XY = ∇XY + h(X,Y ),

∇′

Xξ = −AξX +DXξ,

where X,Y are vector fields tangent to M and ξ is a vector field normal to
M . Moreover, h is the second fundamental form, D is the linear connection
induced in the normal bundle T⊥M , called normal connection, and Aξ is the
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shape operator in the direction of ξ that is related with h by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉.

The covariant differentiation ∇h of the second fundamental form h on the
direct sum of the tangent bundle and the normal bundle TM ⊕ T⊥M of M is
defined by

(∇Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

for any vector fields X,Y and Z tangent to M . The Codazzi equation is given
by

(∇Xh)(Y, Z) = (∇Y h)(X,Z).

We denote by R the curvature tensor associated with ∇, i.e.,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The equations of Gauss and Ricci are given, respectively, by

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉,
〈R⊥(X,Y )ξ, η〉 = 〈[Aξ, Aη]X,Y 〉,

for vector fields X,Y, Z,W tangent to M and ξ, η normal to M .
The mean curvature vector field H of an n-dimensional submanifold M in

E
m is given by

H =
1

n
trace h.

A submanifold M is said to be minimal (respectively, totally geodesic) if
H ≡ 0 (respectively, h ≡ 0).

We shall recall the definition of Gauss map G of a submanifold M . Let
G(n,m) denotes the Grassmannian manifold consisting of all oriented n-planes
through the origin of Em and ∧n

E
m be the vector space obtained by the exterior

product of n vectors in E
m. In a natural way, we can identify ∧n

E
m with

some Euclidean space E
N where N = (mn ) . Let {e1, . . . , en, en+1, . . . , em} be

an adapted local orthonormal frame field in E
m such that e1, e2, . . . , en, are

tangent to M and en+1, en+2, . . . , em are normal to M . The map G : M →
G(n,m) defined by G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) is called the Gauss map of
M . It is a smooth map which carries a point p in M into the oriented n-plane
in E

m obtained by the parallel translation of the tangent space of M at p in
E
m.

For any real function φ on M the Laplacian of φ is defined by

(2) ∆φ = −
∑

i

(∇′

ei
∇′

ei
φ−∇′

∇ei
ei
φ).
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3. Classification of meridian surfaces with pointwise 1-type

Gauss map

Let {e1, e2, e3, e4} be the standard orthonormal frame in E
4, and S2(1) be

the 2-dimensional sphere in E
3 = span{e1, e2, e3}, centered at the origin O. We

consider a smooth curve c : r = r(v), v ∈ J, J ⊂ R on S2(1), parameterized by
the arc-length (r′2(v) = 1). Let t(v) = r′(v) be the tangent vector field of c. We
consider the moving frame field {t(v), n(v), r(v)} of the curve c on S2(1). With
respect to this orthonormal frame field the following Frenet formulas hold:

(3)

r′ = t;

t′ = κn− r;

n′ = −κ t,

where κ(v) = 〈t′(v), n(v)〉 is the spherical curvature of c.
Let f = f(u), g = g(u) be non-zero smooth functions, defined in an interval

I ⊂ R, such that (f ′(u))2 + (g′(u))2 = 1, u ∈ I. We consider the surface M2

in E
4 constructed in the following way:

(4) M2 : z(u, v) = f(u) r(v) + g(u) e4, u ∈ I, v ∈ J

(see [12]).
The surface M2 lies on the rotational hypersurface M3 in E

4 obtained by
the rotation of the meridian curve α : u → (f(u), g(u)) about the Oe4-axis in
E
4. M2 is called a meridian surface on M3 since it is a one-parameter system

of meridians of M3.
The tangent space of M2 is spanned by the vector fields:

(5)
zu = f ′r + g′e4;

zv = f t,

and hence, the coefficients of the first fundamental form of M2 are E = 1; F =
0; G = f2(u). Taking into account (3) and (5), we calculate the second partial
derivatives of z(u, v):

zuu = f ′′r + g′′ e4;

zuv = f ′t;

zvv = fκn− f r.

Let us denote x = zu, y = zv
f

= t and consider the following orthonormal

normal frame field of M2:

n1 = n(v); n2 = −g′(u) r(v) + f ′(u) e4.

Thus we obtain a positive orthonormal frame field {x, y, n1, n2} of M2. We
denote by κα the curvature of the meridian curve α, i.e.,

κα(u) = f ′(u) g′′(u)− g′(u)f ′′(u).
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By covariant differentiation with respect to x and y, and a straightforward
calculation we obtain

(6)

∇′

xx = κα n2;

∇′

xy = 0;

∇′

yx =
f ′

f
y;

∇′

yy = −f ′

f
x+

κ

f
n1 +

g′

f
n2;

and

(7)

∇′

xn1 = 0;

∇′

yn1 = −κ

f
y;

∇′

xn2 = −κα x;

∇′

yn2 = −g′

f
y,

where κ(v) and κα(u) are the curvatures of the spherical c and the meridian
curve α, respectively (see [12]).

Equalities (7) imply the following result.

Lemma 3.1. Let M2 be a meridian surface given with the surface patch (4).
Then

An1
=

[

0 0

0
κ

f

]

, An2
=





κα 0

0
g′

f



 .

So, the Gauss curvature is given by

K =
κα g′

f

and the mean curvature vector field H of M2 is

H =
κ

2f
n1 +

καf + g′

2f
n2.

The Gauss map G of M2 is defined by G = x ∧ y. Using (2), (6), and (7)
we calculate that the Laplacian of the Gauss map is expressed as

∆G =
(fκα)

2 + κ2 + g′2

f2
x ∧ y − κ′

f2
x ∧ n1(8)

−κf ′

f2
y ∧ n1 −

f ′g′ − f(fκα)
′

f2
y ∧ n2,

where κ′ = d
dv
(κ).
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First, we suppose that the Gauss map of M2 is harmonic, i.e., ∆G = 0.
Then from (8) we get

κα = 0;

κ = 0;(9)

g′ = 0.

So, (6) and (9) imply that M2 is a totally geodesic surface in E
4. Conversely,

if M2 is totally geodesic, then ∆G = 0.
Thus we obtain the following result.

Theorem 3.2. Let M2 be a meridian surfaces in the Euclidean space E
4. The

Gauss map of M2 is harmonic if and only if M2 is part of a plane.

Now, we suppose that the meridian surface M2 is of pointwise 1-type Gauss
map, i.e., G satisfies (1), where λ 6= 0. Then, from equalities (1) and (8) we
get

λ+ λ 〈C, x ∧ y〉 =
(fκα)

2 + κ2 + g′2

f2
;

λ 〈C, x ∧ n1〉 = − κ′

f2
;(10)

λ 〈C, y ∧ n1〉 = −κf ′

f2
;

λ 〈C, y ∧ n2〉 = −f ′g′ − f(fκα)
′

f2
.

Using (8) we obtain

λ 〈C, x ∧ n2〉 = 0;

λ 〈C, n1 ∧ n2〉 = 0.(11)

Differentiating (11) with respect to u and v we get

κα 〈C, x ∧ n1〉 = 0;

f ′

f
〈C, y ∧ n2〉 −

g′

f
〈C, x ∧ y〉 = 0;(12)

−κ

f
〈C, y ∧ n2〉+

g′

f
〈C, y ∧ n1〉 = 0.

Since λ 6= 0 equalities (10) and (12) imply

(13)

κακ
′ = 0;

κ (fκα)
′ = 0;

λf2g′ = g′
(

1 + (fκα)
2 + κ2

)

− ff ′(fκα)
′.

We distinguish the following cases.
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Case I: g′ = 0. In such case κα = 0. Then equality (8) implies that

(14) ∆G =
κ2

f2
x ∧ y − κ′

f2
x ∧ n1 −

κf ′

f2
y ∧ n1.

If we assume that M2 has pointwise 1-type Gauss map of the first kind,
i.e., C = 0, then from (14) we get κ′ = 0 and κf ′ = 0, which imply κ = 0
since f ′ 6= 0. Hence ∆G = 0, which contradicts the assumption that λ 6= 0.
Consequently, in the case g′ = 0 there are no meridian surfaces of pointwise
1-type Gauss map of the first kind.

Now we consider meridian surfaces of pointwise 1-type Gauss map of the
second kind, i.e., C 6= 0. So we suppose that κ 6= 0. From equalities (1) and
(14) we obtain

(15) C =

(

κ2

λf2
− 1

)

x ∧ y − κ′

λf2
x ∧ n1 −

κf ′

λf2
y ∧ n1.

Using (6), (7) and (15) we obtain

∇′

xC = κ2

(

1

λf2

)′

u

x ∧ y − κ′

(

1

λf2

)′

u

x ∧ n1 − κf ′

(

1

λf2

)′

u

y ∧ n1;

∇′

yC =
κ

λ2f3

(

3κ′λ− κλ′

v

)

x ∧ y

+
1

λ2f3

(

−κ′′λ+ k′λ′

v + κ3λ+ κλ− κλ2f2
)

x ∧ n1

+
f ′

λ2f3

(

−2κ′λ+ κλ′

v

)

y ∧ n1.

The last formulas imply that C = const if and only if κ = const and λ =
κ2+1
f2 .

The condition κ = const 6= 0 implies that the curve c on S2(1) is a circle
with non-zero constant spherical curvature. Since g′ = 0 and (f ′2 + g′2) = 1
we get f(u) = ±u + a, g(u) = b, where a = const, b = const. In this case
M2 is a developable ruled surface. Moreover, from (7) it follows that ∇′

xn2 =
0; ∇′

yn2 = 0, which implies that M2 lies in the 3-dimensional space spanned
by {x, y, n1}.

Conversely, if g′ = 0 and κ = const, by direct computation we get

∆G =
κ2 + 1

f2
(G+ C),

where C = − 1
κ2+1 x ∧ y − κf ′

κ2+1 y ∧ n1. Hence, M2 is a surface with pointwise
1-type Gauss map of the second kind.

Summing up we obtain the following result.

Theorem 3.3. Let M2 be a meridian surface given with parametrization (4)
and g′ = 0. Then M2 has pointwise 1-type Gauss map of the second kind if

and only if the curve c is a circle with non-zero constant spherical curvature
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and the meridian curve α is determined by f(u) = ±u + a; g(u) = b, where

a = const, b = const. In this case M2 is a developable ruled surface lying in

3-dimensional space.

Case II: g′ 6= 0. In such case from the third equality of (13) we obtain

(16) λ =
g′
(

1 + (fκα)
2 + κ2

)

− ff ′(fκα)
′

f2g′
.

First we shall consider the case of pointwise 1-type Gauss map surfaces of
the first kind. From (8) it follows that M2 is of the first kind (C = 0) if and
only if

(17)

κ′ = 0;

κf ′ = 0;

f ′g′ − f(fκα)
′ = 0.

The first equality of (17) implies that κ = const. There are two subcases:
1. κ = 0. Then the meridian curve α is determined by the equation

(18) f ′g′ − f(fκα)
′ = 0.

The equalities κα = f ′g′′−g′f ′′ and f ′2+g′2 = 1 imply that κα = − f ′′

g′
. Hence

equation (18) can be rewritten in the form

(19) f ′
√

1− f ′2 + f

(

ff ′′

√

1− f ′2

)′

= 0.

Since κ = 0, M2 lies in the 3-dimensional space spanned by {x, y, n2}.
Conversely, if κ = 0 and the meridian curve α is determined by a solution

f(u) of differential equation (19), the function g(u) is defined by g′ =
√

1− f ′2,
then the surface M2, parameterized by (4), is a surface of pointwise 1-type
Gauss map of the first kind.

2. κ 6= 0. Then the second equality of (17) implies that f ′ = 0. In this case
f(u) = a; g(u) = ±u + b, where a = const, b = const. By a result of [12],
M2 is a developable ruled surface in a 3-dimensional space, since κα = 0 and

κ = const. It follows from (16) that λ = 1+κ2

a2 = const, which implies that M2

has 1-type Gauss map, i.e., M2 is non-proper. The converse is also true.
Thus we obtain the following result.

Theorem 3.4. Let M2 be a meridian surface given with parametrization (4)
and g′ 6= 0. Then M2 has pointwise 1-type Gauss map of the first kind if and

only if one of the following holds:
(i) the curve c is a great circle on S2(1) and the meridian curve α is deter-

mined by the solutions of the following differential equation

f ′
√

1− f ′2 + f

(

ff ′′

√

1− f ′2

)′

= 0;
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(ii) the curve c is a circle on S2(1) with non-zero constant spherical curvature

and the meridian curve α is determined by f(u) = a; g(u) = ±u + b, where

a = const, b = const. In this case M2 is a developable ruled surface in a

3-dimensional space. Moreover, M2 is non-proper.

Now we shall consider the case of pointwise 1-type Gauss map surfaces of
the second kind. It follows from equalities (13) that there are three subcases.

1. κα = 0. In this subcase

(20) ∆G =
κ2 + g′2

f2
x ∧ y − κ′

f2
x ∧ n1 −

κf ′

f2
y ∧ n1 −

f ′g′

f2
y ∧ n2.

From equalities (1) and (20) we obtain

C =

(

κ2 + g′2

λf2
− 1

)

x ∧ y − κ′

λf2
x ∧ n1 −

κf ′

λf2
y ∧ n1 −

f ′g′

λf2
y ∧ n2.

The third equality in (13) implies that in this case λ = 1+κ2

f2 and hence, C is

expressed as follows:

(21) C = − 1

1 + κ2

(

f ′2 x ∧ y + κ′ x ∧ n1 + κf ′ y ∧ n1 + f ′g′ y ∧ n2

)

.

Using (6), (7) and (21) we obtain

∇′

xC = − 1

1 + κ2
(2f ′f ′′ x ∧ y + κf ′′ y ∧ n1 + (f ′g′′ + f ′′g′) y ∧ n2) ;

∇′

yC =
1

f(1 + κ2)2
((

2κκ′f ′2 + κκ′(1 + κ2)
)

x ∧ y

+
(

2κκ′2 − (1 + κ2)κ′′
)

x ∧ n1

)

+
1

f(1 + κ2)2
(−2κ′f ′ y ∧ n1 + 2κκ′f ′g′ y ∧ n2).

The last formulas imply that C = const if and only if κ = const, f ′ = a =
const, g′ = b = const, a2 + b2 = 1.

The condition κ = const implies that the curve c is a circle on S2(1). The
meridian curve α is given by f(u) = au + a1; g(u) = bu + b1, where a1 =
const, b1 = const. In this case M2 is a developable ruled surface lying in a
3-dimensional space.

Conversely, if f(u) = au+ a1; g(u) = bu+ b1 and κ = const, then

∆G =
κ2 + b2

f2
x ∧ y − κa

f2
y ∧ n1 −

ab

f2
y ∧ n2.

Hence, by direct computation we get

∆G =
1 + κ2

f2
(G+ C),

where C = − a
1+κ2 (a x ∧ y + κy ∧ n1 + b y ∧ n2). Consequently, M2 is a sur-

face of pointwise 1-type Gauss map of the second kind.
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2. κ = 0. In this subcase

(22) ∆G =
(fκα)

2 + g′2

f2
x ∧ y − f ′g′ − f(fκα)

′

f2
y ∧ n2.

From equalities (1) and (22) we obtain

C =

(

(fκα)
2 + g′2

λf2
− 1

)

x ∧ y − f ′g′ − f(fκα)
′

λf2
y ∧ n2.

Using the third equality of (13) we obtain that C is expressed as follows:

(23) C = −f ′g′ − f(fκα)
′

λf2

(

f ′

g′
x ∧ y + y ∧ n2

)

,

where λ = 1
f2

(

1 + (fκα)
2 − ff ′

g′
(fκα)

′

)

. We denote

(24) ϕ = −f ′g′ − f(fκα)
′

λf2
.

Then equalities (6), (7) and (23) imply

(25)
∇′

xC =

(

(

ϕ
f ′

g′

)′

+ ϕκα

)

x ∧ y +

(

ϕ′ − ϕ
f ′

g′
κα

)

y ∧ n2;

∇′

yC = 0.

It follows from (25) that C = const if and only if ϕ′ = ϕ f ′

g′
κα, or equivalently

(26) (lnϕ)′ =
f ′

g′
κα.

Using that fκα = − ff ′′√
1−f ′2

, from (24) we get

(27) ϕ =
−
√

1− f ′2
(

f(1− f ′2)(ff ′′)′2f ′f ′′2 + f ′(1− f ′2)2
)

ff ′(ff ′′)′(1− f ′2) + f2f ′′2 + (1− f ′2)2
.

Now, formulas (26) and (27) imply that C = const if and only if the function
f(u) is a solution of the following differential equation

(28)

(

ln
−
√

1− f ′2
(

f(1− f ′2)(ff ′′)′2f ′f ′′2 + f ′(1− f ′2)2
)

ff ′(ff ′′)′(1− f ′2) + f2f ′′2 + (1− f ′2)2

)′

= − f ′f ′′

1− f ′2
.

Conversely, if κ = 0 and the meridian curve α is determined by a solution

f(u) of differential equation (28), g(u) is defined by g′ =
√

1− f ′2, then the
surface M2, parameterized by (4), is a surface of pointwise 1-type Gauss map
of the second kind.

3. κ = const 6= 0 and fκα = a = const, a 6= 0. In this subcase

(29) ∆G =
a2 + κ2 + g′2

f2
x ∧ y − κf ′

f2
y ∧ n1 −

f ′g′

f2
y ∧ n2.
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From equalities (1), (16) and (29) we obtain

(30) C = − 1

1 + a2 + κ2

(

f ′2 x ∧ y + κf ′ y ∧ n1 + f ′g′ y ∧ n2

)

.

Then equalities (6), (7) and (30) imply

(31)
∇′

xC = − 1

1 + a2 + κ2
(f ′f ′′ x ∧ y + κf ′′ y ∧ n1 + g′f ′′ y ∧ n2);

∇′

yC = 0.

Formulas (31) imply that C = const if and only if f ′′ = 0. But, if f ′′ = 0,
then κα = 0, which contradicts the assumption that fκα 6= 0.

Consequently, if κ = const 6= 0 and fκα = a = const, a 6= 0, then there are
no meridian surfaces of pointwise 1-type Gauss map of the second kind.

Summing up we obtain the following result.

Theorem 3.5. Let M2 be a meridian surface given with parametrization (4)
and g′ 6= 0. Then M2 has pointwise 1-type Gauss map of the second kind if

and only if one of the following holds:
(i) the curve c is a circle on S2(1) and the meridian curve α is determined

by f(u) = au + a1; g(u) = bu + b1, where a, a1, b, b1 are constants. In this

case M2 is a developable ruled surface lying in a 3-dimensional space;
(ii) the curve c is a great circle on S2(1) and the meridian curve α is deter-

mined by the solutions of the following differential equation
(

ln
−
√

1− f ′2
(

f(1− f ′2)(ff ′′)′2f ′f ′′2 + f ′(1 − f ′2)2
)

ff ′(ff ′′)′(1− f ′2) + f2f ′′2 + (1 − f ′2)2

)′

= − f ′f ′′

1− f ′2
.

Theorem 3.3, Theorem 3.4, and Theorem 3.5 describe all meridian surfaces
with pointwise 1-type Gauss map.
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