• Title/Summary/Keyword: $K{\ddot{a}}hler$ manifold

Search Result 28, Processing Time 0.019 seconds

F-TRACELESS COMPONENT OF THE CONFORMAL CURVATURE TENSOR ON KÄHLER MANIFOLD

  • Funabashi, Shoichi;Kim, Hang-Sook;Kim, Young-Mi;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.795-806
    • /
    • 2007
  • We investigate F-traceless component of the conformal curvature tensor defined by (3.6) in $K\ddot{a}hler$ manifolds of dimension ${\geq}4$, and show that the F-traceless component is invariant under concircular change. In particular, we determine $K\ddot{a}hler$ manifolds with parallel F-traceless component and improve some theorems, provided in the previous paper([2]), which are concerned with the traceless component of the conformal curvature tensor and the spectrum of the Laplacian acting on $p(0{\leq}p{\leq}2)$-forms on the manifold by using the F-traceless component.

H-SLANT SUBMERSIONS

  • Park, Kwang-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.329-338
    • /
    • 2012
  • In this paper, we define the almost h-slant submersion and the h-slant submersion which may be the extended version of the slant submersion [11]. And then we obtain some theorems which come from the slant submersion's cases. Finally, we construct some examples for the almost h-slant submersions and the h-slant submersions.

CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM

  • Kim, Hyang Sook;Pak, Jin Suk
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.147-161
    • /
    • 2013
  • In this paper we determine certain class of $n$-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic K$\ddot{a}$hler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3-structure.

ON EINSTEIN HERMITIAN MANIFOLDS II

  • Kim, Jae-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.289-294
    • /
    • 2009
  • We show that on a Hermitian surface M, if M is weakly *-Einstein and has J-invariant Ricci tensor then M is Einstein, and vice versa. As a consequence, we obtain that a compact *-Einstein Hermitian surface with J-invariant Ricci tensor is $K{\ddot{a}}hler$. In contrast with the 4- dimensional case, we show that there exists a compact Einstein Hermitian (4n + 2)-dimensional manifold which is not weakly *-Einstein.

A REMARK ON QUASI CONTACT METRIC MANIFOLDS

  • Park, JeongHyeong;Sekigawa, Kouei;Shin, Wonmin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.1027-1034
    • /
    • 2015
  • As a natural generalization of the contact metric manifolds, Kim, Park and Sekigawa discussed quasi contact metric manifolds based on the geometry of the corresponding quasi $K{\ddot{a}}hler$ cones. In this paper, we show that a quasi contact metric manifold is a contact manifold.

CLASSIFICATION OF (k, 𝜇)-ALMOST CO-KÄHLER MANIFOLDS WITH VANISHING BACH TENSOR AND DIVERGENCE FREE COTTON TENSOR

  • De, Uday Chand;Sardar, Arpan
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1245-1254
    • /
    • 2020
  • The object of the present paper is to characterize Bach flat (k, 𝜇)-almost co-Kähler manifolds. It is proved that a Bach flat (k, 𝜇)-almost co-Kähler manifold is K-almost co-Kähler manifold under certain restriction on 𝜇 and k. We also characterize (k, 𝜇)-almost co-Kähler manifolds with divergence free Cotton tensor.

Non Existence of 𝒫ℛ-semi-slant Warped Product Submanifolds in a Para-Kähler Manifold

  • Sharma, Anil
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.197-210
    • /
    • 2020
  • In this paper, we prove that there are no non-trivial 𝒫ℛ-semi-slant warped product submanifolds with proper slant coefficients in para-Kähler manifolds ${\bar{M}}$. We also present a numerical example that illustrates the existence of a 𝒫ℛ-warped product submanifold in ${\bar{M}}$.