DOI QR코드

DOI QR Code

CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM

  • Kim, Hyang Sook (Department of Applied Mathematics, Institute of Basic Science, Inje University) ;
  • Pak, Jin Suk (Kyungpook National University)
  • Received : 2013.03.05
  • Accepted : 2013.04.24
  • Published : 2013.06.25

Abstract

In this paper we determine certain class of $n$-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic K$\ddot{a}$hler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3-structure.

Keywords

References

  1. A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
  2. B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
  3. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 5 (1971), 333-340. https://doi.org/10.4310/jdg/1214429997
  4. S. Funabashi, J. S. Pak and Y. J. Shin, On the normality of an almost contact 3-structure on QR-submanifolds, Czecho. Math. J. 53 (2003), 571-589. https://doi.org/10.1023/B:CMAJ.0000024504.11219.d9
  5. S. Ishihara, Quaternion Kaehlerian manifolds, J. Diff. Geom. 9 (1974), 483-500. https://doi.org/10.4310/jdg/1214432544
  6. S. Ishihara and M. Konishi, Differential geometry of fibred spaces, Publication of the study group of geometry, Vol. 8, Tokyo, 1973.
  7. H. S. Kim and J. S. Pak, QR-submanifolds of maximal QR-dimension in quaternionic projective space, J. Korean Math. Soc. 42 (2005), 655-672. https://doi.org/10.4134/JKMS.2005.42.4.655
  8. Y. Y. Kuo, On almost contact 3-structure, Tohoku Math. J. 22 (1970), 325-332. https://doi.org/10.2748/tmj/1178242759
  9. J.-H. Kwon and J. S. Pak, Scalar curvature of QR-submanifolds immersed in a quaternionic projective space, Saitama Math. J. 17 (1999), 47-57.
  10. J.-H. Kwon and J. S. Pak, QR-submanifolds of (p-1) QR-dimension in a quaternionic projective space $QP^{(n+p)/4}$, Acta Math. Hungarica 86 (2000), 89-116. https://doi.org/10.1023/A:1006795518714
  11. H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4 (1970), 349-357. https://doi.org/10.4310/jdg/1214429508
  12. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, T. E. Cecil and S. S. Chern, eds., Cambridge University Press, 1998.
  13. J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep. 29 (1977), 22-61. https://doi.org/10.2996/kmj/1138833571