• Title/Summary/Keyword: $K^+$ ion source

Search Result 633, Processing Time 0.033 seconds

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Removal Torque of Mg-ion Implanted Clinical Implants with Plasma Source Ion Implantation Method (마그네슘 이온주입 임플란트의 뒤틀림 제거력에 관한 연구)

  • Kim, Bo-Hyoun;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.41-52
    • /
    • 2009
  • The surface treatment of titanium implant could bring out the biochemical bonding between bone and implant. The purpose of this study was to evaluate the biomechanical bone response of Mg-ion implanted implants with plasma source ion implantation method. Twelve New Zealand white rabbits were included in this study. Each rabbit received one control fixture (blasted with resorbable blasting media, RBM) and three types of Mg ion implanted fixtures in tibiae. The implants were left in place for 6 weeks before the rabbits were sacrificed. Removal torque value and resonance frequency analysis (ISQ) were compared. The repeated measured analysis of variance was used with $P{\leq}0.05$ as level of statistical significance. ISQ was not different among all groups. However, the ISQ was increased after 6 weeks healing. The group had lowest ISQ value showed the greatest increment. Mg-1 implants with 9.4% retained ion dose showed significantly higher removal torque value than that of the other implants. From this results, it is concluded that the Mg-1 implants has stronger bone response than control RBM surface implant.

A Study on Implementation of Source Head Ass'y of Implanter (이온주입기 Source Head Ass'y 개발에 관한 연구)

  • Han, Jung-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.267-269
    • /
    • 2008
  • 본 연구는 이온주입(Ion Implanter)장비의 성능향상과 재현성 있는 Source Head를 개발하기 위한 방법이다. 본 개발은 이온주입설비가 가지고 있는 Cathode 열전자를 이용하여 원자라는 Source Positive의 극성을 생성하여 보다 높은 이온화를 발생하여 많은 시간 동안 사용 가능하도록 하였다. 기존에는 Gas의 손실이 많아 원자의 이온화에 대한 열전자의 소모성을 증가하는 원인을 제공하였으나, 본 개발에서는 원자의 유입방식을 공중 분산방식으로 적용함으로써 열전자의 손실로 발생하는 부분을 억제하는 효과와 Arc Chamber의 압력을 낮게 가지고 갈 수 있고 Chamber의 오염을 억제하는 효과를 얻을 수 있었다.

  • PDF

Effect on 4H-SiC Schottky Rectifiers of Ar Discharges Generated in A Planar Inductively Coupled Plasma Source

  • Jung, P.G.;Lim, W.T.;Cho, G.S.;Jeon, M.H.;Lee, J.W.;Nigam, S.;Ren, F.;Chung, G.Y.;Macmillan, M.F.;Pearton, S.J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • 4H-SiC Schottky rectifiers were exposed to pure Ar discharges in a planar coil Inductively Coupled Plasma system, as a function of source power, of chuck power and process pressure. The reverse breakdown voltage ($V_B$) decreased as a result of plasma exposure due to the creation of surface defects associated with the ion bombardment. The magnitude of the decrease was a function of both ion flux and ion energy. The forward turn-on voltage ($V_F$), on-state resistance ($R_{ON}$) and diode ideality factor (n) all increased after plasma exposure. The changes in all of the rectifier parameters were minimized at low power, high pressure plasma conditions.

Technology Developments for Recycling of Lithium Battery Wastes

  • Sohn, Jeong-Soo;Lee, Churl-Kyung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.65-74
    • /
    • 2003
  • As new functional electronics are being developed fast, the commercialization rate of advanced battery as a power source proceeds rapidly. Lithium battery is satisfying the needs of high-energy source for its lightness and good electrochemical property. Especially lithium ion battery, adopted as a new power source for portable electronic equipments around the globe, has been mass-produced. Under the circumstance, the generation of lithium battery wastes is becoming a new environmental problem. In this paper, we are going to inspect technology developments for recycling of lithium battery wastes and scraps in domestic and foreign area, and to suggest how to treat domestic lithium battery wastes and scraps better.

keV SURFACE MODIFICATION AND THIN FILM GROWTH

  • Koh, Seok-Keun;Choi, Won-Kook;Youn, Young-Soo;Song, Seok-Kyun;Cho, Jun-Sik;Kim, Ki-Hwan;Jung, Hyung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.95-99
    • /
    • 1995
  • keV ion beam irradiatin for surface modification and thin film growth have been discussed. keV ion beam irradiation in reactive gas environment has been developed for improving wettability of polymer, and for enhancing adhesion to metal film, and adventages of the method have been reviewed. An epitaxial Cu film on Si(100) substrate has been grown by ionized cluster beam and changes of crystallinity and surface roughness have been discussed. Stoichiometric $SnO_2$ films on Si(100) and glass have been grown by a hybrid ion beam Deposition(2 metal ion sources+1 gas ion source), and nonstoichiometric $SnO_2$ films are controlled by various deposition conditions in the HIB. Surface modification for polymer by kev ion irradiation have been developed. Wetting angle of water to PC has been changed from 68 degree to 49 degree with $Ar^+$ irradiation and to 8 degree with $Ar^+$ irradiation and the oxygen environment. Change of surface phenomena in a keV ion beam and characteristics of the grown films are suggested.

  • PDF

A Study on Ion Shower Doping in Si Thin Film (이온 도핑 방법에 의한 실리콘 박막의 도핑 연구)

  • Yoo, Soon-Sung;Jun, Jung-Mok;Lee, Kyung-Ha;Moon, Byeong-Yeon;Jang, Jin
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.106-112
    • /
    • 1994
  • We have developed a large area ion shower doping system with an RF plasma ion source. The ion current density (i.e., doping concentration) increases with RF power and acceleration voltage. Using this technique, we investigated the optimum condition for ion doping of phosphorus in a-Si:H and poly-Si films. The optimum acceleration voltage and doping time are 6KV and 90sec, respectively, in a-Si:H films. Under this condition the electrical conductivity of ion-doped a-Si:H film is obtained ~10$^{-3}$/cm at room temperature. The sheet resistance decreases witnh acceleration voltage in ion-doped poly-Si, and a heavily-doped layer with a sheet resistance of 920$\Omega$/ㅁ is obtained by using ion doping and subsequent activation.

  • PDF

The Effect of Annealing Methods on Dopant Activation and Damage Recovery of Phosphorous ion Shower Doped Poly-Si (다결정 실리콘 박막 위에 P이온 샤워 도핑 후 열처리 방법에 따르는 도펀트 활성화 및 결함 회복에 관한 효과)

  • Kim, Dong-Min;Ro, Jae-Sang;Lee, Ki-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) poly-Si.The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value using UV-transmittance was found to correlate well with the one measured using Raman Spectroscopy. The sheet resistance decreases as the acceleration voltage increases from 1kV to 15kV at the moderate doping conditions. It, however, increases as the acceleration voltage increases under the severe doping conditions. The reduction in carrier concentration due to electron trapping at uncured damage after activation annealing seems to be responsible for the rise in sheet resistance. Three different annealing methods were investigated in terms of dopant-activation and damage-recovery, such as furnace annealing, excimer laser annealing, and rapid thermal annealing, respectively.