• Title/Summary/Keyword: $In_2O_3$ 박막

Search Result 1,919, Processing Time 0.029 seconds

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

A study on the application of dichroic mirror for the improvement of luminance and luminous efficacy in an AC Plasma Display Panel (AC-PDP의 휘도와 효율 향상을 위한 Dichroic Mirror의 응용에 관한 연구)

  • 송병무;김중균;황만수;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • A new application of dirchroic mirror for the improvement of luminance and luminous efficacy in an AC-Plasma Display Panel (PDP) is suggested. Only about half of the Vacuum Ultraviolet (VUV) generated in the reflective PDP cell is used for the excitation of the phosphor. We are suggesting an idea of adopting a dichroic mirror which can reflect the VUV toward the phosphor which otherwise is absorbed by the front panel. The optical constants of the thin films of dirhroic mirror were determined from the photometric measurements through an iteration process of matching calculated and measured values of the reflectance and transmittance in the VUV wavelength region. From these results, we could design such a filter whose high reflection zone is centered at 147nm by a computer simulation accurately. The 147nm VUV is radiated from Xenon 3Pl state which is dominantly used to activate the phosphor in the PDP cell. The dichroic mirror was made with an electronbeam evaporator and its reflectance was measured by a reflectometer. We confirmed the usefulness of the dichroic mirror for the improvement of efficiency with experiments done by test panels. The panel with mirror shows improved luminance and luminous efficacy by 20∼30%.

  • PDF

Research Trends for Improvement of NBIS Instability in Amorphous In-Ga-ZnO Based Thin-Film Transistors (비정질 인듐-갈륨-아연 산화물 기반 박막 트랜지스터의 NBIS 불안정성 개선을 위한 연구동향)

  • Yoon, Geonju;Park, Jinsu;Kim, Jaemin;Cho, Jaehyun;Bae, Sangwoo;Kim, Jinseok;Kim, Hyun-Hoo;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.371-375
    • /
    • 2019
  • Developing a thin-film transistor with characteristics such as a large area, high mobility, and high reliability are key elements required for the next generation on displays. In this paper, we have investigated the research trends related to improving the reliability of oxide-semiconductor-based thin-film transistors, which are the primary focus of study in the field of optical displays. It has been reported that thermal treatment in a high-pressure oxygen atmosphere reduces the threshold voltage shift from -7.1 V to -1.9 V under NBIS. Additionally, a device with a $SiO_2/Si_3N_4$ dual-structure has a lower threshold voltage (-0.82 V) under NBIS than a single-gate-insulator-based device (-11.6 V). The dual channel structure with different oxygen partial pressures was also confirmed to have a stable threshold voltage under NBIS. These can be considered for further study to improve the NBIS problem.

The Fabrication of $n^+-p^+$ InP Solar Cells by the Diffusion of Sulphur (S확산에 의한 $n^+-p^+$ InP 태양전지의 제작)

  • Jung, Ki-Ung;Kim, Seon-Tai;Moon, Dong-Chan
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.60-65
    • /
    • 1990
  • [ $n^+-p^+$ ] InP homojunction solar cells were fabricated by thermal diffusion of sulphur into a $p^+$-InP wafer($p=4{\times}10^{18}cm^{-3}$), and a SiO film($600{\AA}$ thick) was coated on the $n^+$ layer as an antireflection(AR) coating by an e-beam evaporator. The volume of the cells were $5{\times}5{\times}0.3mm^3$. The front contact grids of the cells with 16 finger pattern of which width and space were $20{\mu}m$ and $300{\mu}m$ respectively, were formed by photo-lithography technique. The junction depth of sulphur were as shallow as about 0.4r m We found out the fabricated solar cells that, with increasing the diffusion time, short circuit current densities($J_{sc}$), series resistances($R_s$) and energy conversion efficiencies(${\eta}$) were increased. The cells show good spectral responses in the region of $5,000-9,000{\AA}$. The short circuit current density, the open circuit voltage( $V_{oc}$), the fill factor(F.F) and the energy conversion efficiency of the cell were $13.16mA/cm^2$, 0.38V, 53.74% and 10.1% respectively.

  • PDF

Structural Properties of Ammoniated Thin Cr Films with Oxygen Incorporated During Deposition (산소가 혼입된 Cr 박막의 질화처리에 따른 구조적 특성)

  • Kim, Jun;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.194-200
    • /
    • 2014
  • Metallic Cr film coatings of $1.2{\mu}m$ thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in $NH_3$ gas flow conditions between 400 and $900^{\circ}C$. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at $500^{\circ}C$ and with further increases in annealing temperature not only chromium nitrides ($Cr_2N$ and CrN) but also chromium oxide ($Cr_2O_3$) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above $800^{\circ}C$, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to $900^{\circ}C$, while the nitrogen concentration was increased to 42 at%.

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process (RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성)

  • Son, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Dielectric Characteristics due to the nano-pores of SiOCH Thin Flm (기공형성에 의한 SiOCH 박막의 유전 특성)

  • Kim, Jong-Wook;Park, In-Chul;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.19-23
    • /
    • 2009
  • We have studied dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was introduced with the flow rates from 24 sccm to 32 sccm by 2 sccm step in the constant flow rate of 60 sccm $O_2$. Then, SiOCH thin film deposited at room temperature was annealed at temperature of $400^{\circ}C$ and $500^{\circ}C$ for 30 minutes in vacuum. The vibrational groups of SiOCH thin films were analyzed by FT/IR absorption lines, and the dielectric constant of the low-k SiOCH thin films were obtained by measuring C-V characteristic curves. With the result that FTIR analysis, as BTMSM flow rate increase, relative carbon content of SiOCH thin film increased from 29.5% to 32.2%, and increased by 32.8% in 26 sccm specimen after $500^{\circ}C$ annealing. Dielectric constant was lowest by 2.32 in 26 sccm specimen, and decreased more by 2.05 after $500^{\circ}C$ annealing. Also, leakage current is lowest by $8.7{\times}10^{-9}A/cm^2$ in this specimen. In the result, shift phenomenon of chemical bond appeared in SiOCH thin film that BTMSM flow rate is deposited by 26 sccms, and relative carbon content was highest in this specimen and dielectric constant also was lowest value

  • PDF

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation (Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성)

  • Song, O-Seong;Lee, Yeong-Min
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1042-1046
    • /
    • 2001
  • Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

  • PDF

Characteristics of IGZO Films Formed by Room Temperature with Thermal Annealing Temperature (상온에서 증착된 IGZO 박막의 열처리 온도에 따른 특성)

  • Lee, Seok-Ryeol;Lee, Kyong-Taik;Kim, Jae-Yeal;Yang, Myoung-Su;Kang, In-Byeong;Lee, Ho-Seong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.181-185
    • /
    • 2014
  • We investigated the structural, electrical and optical characteristics of IGZO thin films deposited by a room-temperature RF reactive magnetron sputtering. The thin films deposited were annealed for 2 hours at various temperatures of 300, 400, 500 and $600^{\circ}C$ and analyzed by using X-ray diffractometer, transmission electron microscopy, atomic force microscope and Hall effects measurement system. The films annealed at $600^{\circ}C$ were found to be crystallized and their surface roughness was decreased from 0.73 nm to 0.67 nm. According to XPS measurements, concentration of oxygen vacancies were decreased at $600^{\circ}C$. Optical band gap were increased to 3.31eV. The carrier concentration and Hall mobility were sharply increased at 600oC. Our results indicate that the IGZO films deposited at a room temperature can show better thin film properties through a heat treatment.