• Title/Summary/Keyword: $H_2O_2$ tolerance

Search Result 146, Processing Time 0.028 seconds

Anti-oxidative Activity of Ethyl acetate Fraction of the Dried Ginger in Caenorhabditis elegans (건강 에틸아세테이트 분획의 예쁜꼬마선충 내의 항산화 효과)

  • Lee, Eun Byeol;Kim, Jun Hyeong;Leem, Jae-Yoon;Kim, Hye-Soo;Kim, Dae-Sung;Eun, Jae Soon;Han, Sooncheon;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.179-185
    • /
    • 2016
  • Ginger (Zingiber officnale Roscoe, Zingiberaceae), which is a well-known food seasoning, has been used as a traditional medicine for the treatment of gastrointestinal disorder, vomiting and cough in Korea, China and Japan. Ethanol extract from the dried ginger (DG) was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions the ethyl acetate soluble fraction (EDG) showed the most potent DPPH radical scavenging and superoxide quenching activities. To know the effect of antioxidant activities of EDG, we tested the activities of superoxide dismutase (SOD) and catalase together with oxidative stress tolerance and intracellular ROS level in Caenorhabditis elegans. To investigate whether EDG-mediated increased stress tolerance was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain including CF1553. Consequently, EDG elevated SOD and catalase activities of C. elegans, reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, EDG-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Anti-oxidative Effects of Allium hookeri Leaves in Caenorhabditis elegans (삼채 잎의 예쁜꼬마선충 내의 항산화 효과)

  • Ki, Byeolhui;Lee, Eun Byeol;Kim, Jun Hyeong;Yang, Jae Heon;Kim, Dae Keun;Kim, Young-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • As an ongoing study about Allium hookeri (Liliaceae), this study was performed to evaluate the anti-oxidative effect of the leaves of this plant. Ethanol extract of A. hookeri leaves was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. The ethyl acetate soluble fraction showed the most potent DPPH radical scavenging and superoxide quenching activities among those fractions. To prove antioxidant activity of ethyl acetate fraction of A. hookeri leaves, we checked the activities of superoxide dismutase (SOD) and catalase, and intracellular ROS level and oxidative stress tolerance in Caenorhabditis elegans. In addition, to verify if increased stress tolerance of C. elegans by treating of ethyl acetate fraction was due to regulation of stress-response gene, we checked SOD-3 expression using transgenic strain. As a consequence, the ethyl acetate fraction increased SOD and catalase activity of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Selection of (Ac/Ds) insertion mutant lines by abiotic stress and analysis of gene expression pattern of rice (Oryza sativar L.) (비생물학적 스트레스 관련 벼 Ac/Ds 삽입 변이체의 선발 및 유전자 발현 분석)

  • Jung, Yu-Jin;Park, Seul-Ah;Ahn, Byung-Ohg;Yun, Doh-Won;Ji, Hyeon-So;Lee, Gang-Sup;Park, Young-Whan;Suh, Seok-Cheol;Baek, Hyung-Jin;Lee, Myung-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.307-316
    • /
    • 2008
  • Transposon-mediated insertional mutagenesis is one of powerful strategy for assessing functions of genes in higher plants. In this report, we have selected highly susceptible and tolerance plant by screening about high salt (3% NaCl) and cold stresses ($4^{\circ}C$) from F2 seeds of 30,000 Ac/Ds insertional mutagenesis lines in rice (Oryza sativa L. cv. Dongjin). In order to identify the gene tagging, insertion of Ds element was analyzed by Southern blot and these results revealed that 19 lines were matched genotype of selected lines with phenotype from the first selected 212 lines, and 13 lines have one copy of Ds elements. The Franking Sequence Tags (FSTs) of selected mutant lines showed high similarities with the following known function genes: signal transduction and regulation of gene expression (transpoter, protease family protein and apical meristem family protein), osmotic stress response (heat shock protein, O-methyltransferase, glyceraldehyde-3-phosphate dehydrogenase and drought stress induce protein), vesicle trafficking (SYP 5 family protein) and senescence associated protein. The expression pattern of 19 genes were analyzed using RT-PCR under the abiotic stresses of 9 class; 250mM NaCl, osmotic, drought, 3% $H_2O_2$, $100{\mu}M$ ABA, $100{\mu}M$ IAA, 0.1 ppm 2,4-D, $4^{\circ}C$ cold and $38^{\circ}C$ high temperature. Isolated knock-out genes showed the positive response about 250 mM NaCl, drought, $H_2O_2$, PEG, IAA, 2,4-D, ABA treatment and low ($4^{\circ}C$) and high temperature ($38^{\circ}C$). The results from this study indicate that function of selected knock-out genes could be useful in improving of tolerance to abiotic stresses as an important transcriptional activators in rice.

The Power of Being Small: Nanosized Products for Agriculture

  • Anderson, Anne J.
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.99-112
    • /
    • 2018
  • Certain agrochemicals may be tuned for increased effectiveness when downsized to nanoparticles (NPs), where one dimension is less than 100 nm. The NPs may function as fertilizers, pesticides and products to improve plant health through seed priming, growth promotion, and induction of systemic tolerance to stress. Formulations will allow targeted applications with timed release, reducing waste and pollution when compared to treatments with bulk-size products. The NPs may be a single component, such as nano-ZnO as a fertilizer, or be composites of compatible materials, for example where N, P, and K plus micronutrients are available. The active materials could be loaded into porous carriers or tethered to base nanostructures. Coatings could include such natural products alginate, chitosan, zein, or silica. Certain NPs are taken up and transported in the plant's phloem and xylem so systemic effects are feasible. Timed and targeted release of the active product could be achieved in response to changes in pH or availability of ligands within the plant or the rhizosphere. Global research has revealed the many potentials offered by NP formulations to aid sustainability in agriculture. Current work will provide information needed by regulatory agencies to assess their safety in the agricultural setting.

A Novel Iron(III) Selective Membrane Electrode Containing a Tripodal Polycatacholamine as Sensor

  • Bera, Rati Kanta;Sahoo, Suban K;Baral, Minati;Kanungo, B.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3592-3596
    • /
    • 2011
  • A novel poly(vinylchloride)-based membrane sensor using $N^1$,$N^3$,$N^5$-tris(2-(2,3-dihydroxybenzylamino)-ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, L) as ionophore has been prepared and explored as $Fe^{3+}$ selective electrode. The membrane electrode composed of ionophore, poly(vinylchloride) and o-nitropheyloctyl ether in the optimum ratio 4:33:63 gave excellent potentiometric response characteristics, and displayed a linear log[$Fe^{3+}$] versus EMF response over a wide concentration range of $1.0{\times}10^{-5}-1.0{\times}10^{-1}$ M with super nernstian slope of 28.0 mV/decade and the detection limit of $8.0{\times}10^{-6}$ M. The proposed ion selective electrode showed fast response time (< 15 s), wide pH range (3.0-7.0), high non-aqueous tolerance (up to 20%) and adequate long life time (120 days). It also exhibited very good selectivity for $Fe^{3+}$ relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. Further, the analytical applicability of the sensor was tested as an indicator electrode in the potentiometric titration of $Fe^{3+}$ with EDTA.

Susceptibility of Embryonic and Postembryonic Developmental Stages of Riptortus clavatus(Hemiptera : Alydidae) to Diflubenzuron (톱다리개미허리노린재의 배자발육에 미치는 Diflubenzuron의 영향)

  • 안용준;김길하;조광연
    • Korean journal of applied entomology
    • /
    • v.31 no.4
    • /
    • pp.480-485
    • /
    • 1992
  • Laboratory studies were done to evaluate the effects of diflubenzuron on embryonic and postembryonic development of Riptortus clavatus Thunberg. Diflubenzuron prevented egg hatch; younger eggs(O-12 h old) were 2 times as susceptible as older(48-60 h old) eggs, but embryos of both younger and older eggs developed normally. Susceptibility of nymphs to diflubenzuron decreased with each successive molt. Compared with the first instar, relative tolerance to diflubenzuron was 1.5 times for the second instar, 18.2 times for the third instar, 39. 4 times for the fourth ins tar and 42.4 times for the fifth instar. Even as low concentrations, diflubenzuron prevented significant numbers of third instar nymphs from developing to fourth and fifth instar nymphs or adults. Weight, longevity and fecundity of adults surviving treatment in the final (fifth) instar were also adversely affected.

  • PDF

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

Antioxidant Activity of n-Butanol Fraction of Chaenomeles sinensis Fruit in Caenorhabditis elegans (모과 부탄올 분획의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Kim, Ju-Eun;Shrestha, Abinash Chandra;Ham, Ha-Neul;Leem, Jae-Yoon;Jo, Hyung-Kwon;Kim, Dae-Sung;Moon, Kwang Hyun;Lee, Jeong Ho;Jeong, Kyung Ok;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • Chaenomeles sinensis (Thouin) Koehne fruit (Rosaceae) has been used as a traditional medicine in Korea, Japan and China to treat sore throat, diarrhea and inflammation. The ethanol extract of C. sinensis fruit was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions, the n-butanol fraction showed the most potent DPPH radical scavenging and superoxide quenching activities. To verify antioxidant activities, the n-butanol fraction was checked the activities of superoxide dismutase (SOD) and catalase activities, and intracellular ROS levels and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, to see if increased stress tolerance of worms by treating of the n-butanol fraction was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain. Consequently, the n-butanol fraction elevated SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, the n-butanol fraction-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Effect of Allopurinol on Ultrastructural Changes in Ischemia Reperfusion Injury to Skeletal Muscle of Rats After Graded Periods of Complete Ischemia (흰쥐에서 허혈시간에 따라 재관류후 나타나는 근조직의 미세구조 변화에 allopurinol이 미치는 영향)

  • Paik, Doo-Jin;Chun, Jae-Hong
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.51-62
    • /
    • 1995
  • It has been well known that ischemia and reperfusion injury to skeletal muscle following an acute arterial occlusion causes significant morbidity and mortality. The skeletal muscle, which contains high energy phosphate compounds, has ischemic tolerance. During the ischemia, the ATP is catalyzed to hypoxanthine anaerobically and hypoxanthine dehydrogenase is converted to xanthine oxidase. During reperfusion, the hypoxanthine is catalyzed to xanthine by xanthine oxidase under $O_2$, presence and that results in production of cytotoxic oxygen free radicals. These cytotoxic free radicals, $O_2^-,\;H_{2}O_2,\;OH^-$, are toxic and make lesions in skeletal muscle during reperfusion. The authors perform the present study to investigate the effects of allopurinol, the inhibitor of xanthine oxidase, on reperfused ischemic skeletal muscles by observing the ultrastructural changes of the muscle fibers. A total of 48 healthy Sprague-Dawley rats weighing from 200 g to 250 g were used as experimental animals. Under urethane(3.0mg/kg., IP) anesthesia, lower abdominal incision was done and the left common iliac artery were ligated by using vascular clamp for 1, 2 and 6 hours. The left rectus femoris muscles were obtained at 6 hours after the removal of vascular clamp. In the allopurinol pretreated group, 50mg/kg of allopurinol was administered once a day for 2 days and before 2 hours of ischemia. The specimens were sliced into $1mm^3$ and prepared by routine methods for electron microscopic observations. All preparations were stained with uranyl acetate and lead citrate, and then observed with Hitachi -600 transmission electron microscope. The results were as follows: 1. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats, decreased glycogen particles and electron density of mitochondrial matrix and dilated terminal cisternae are seen. In 2 hours ischemia/6 hours repersed rectus femoris muscles of rats, mitochondria with electron lucent matrix, irregularly dilated triad and spheromembranous bodies are observed. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats, irregularly arranged myofibrils, and many spheromembranous bodies, fat droplets and lysosome are seen. 2. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, decreased glycogen particle and dilated cisternae of sarcoplasmic reticulum and triad are observed. In 2 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol decreased electron density of mitochondrial matrix and spheromembranous bodies are seen. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, mitochondria with electron lucent matrix, spheromembranous bodies and dilated cisternae of sarcoplasmic reticulum and terminal cistern are observed. The results suggest that the allopurinol attenuates the damages of the skeletal muscles of rats during ischemia and reperfusion.

  • PDF