Browse > Article
http://dx.doi.org/10.5423/RPD.2018.24.2.99

The Power of Being Small: Nanosized Products for Agriculture  

Anderson, Anne J. (Department of Biological Engineering, Utah State University)
Publication Information
Research in Plant Disease / v.24, no.2, 2018 , pp. 99-112 More about this Journal
Abstract
Certain agrochemicals may be tuned for increased effectiveness when downsized to nanoparticles (NPs), where one dimension is less than 100 nm. The NPs may function as fertilizers, pesticides and products to improve plant health through seed priming, growth promotion, and induction of systemic tolerance to stress. Formulations will allow targeted applications with timed release, reducing waste and pollution when compared to treatments with bulk-size products. The NPs may be a single component, such as nano-ZnO as a fertilizer, or be composites of compatible materials, for example where N, P, and K plus micronutrients are available. The active materials could be loaded into porous carriers or tethered to base nanostructures. Coatings could include such natural products alginate, chitosan, zein, or silica. Certain NPs are taken up and transported in the plant's phloem and xylem so systemic effects are feasible. Timed and targeted release of the active product could be achieved in response to changes in pH or availability of ligands within the plant or the rhizosphere. Global research has revealed the many potentials offered by NP formulations to aid sustainability in agriculture. Current work will provide information needed by regulatory agencies to assess their safety in the agricultural setting.
Keywords
Nanoparticles; Nanosize; Nanofertilizers; Nanopesticides; Plant growth and immuno stimulants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Timmusk, S., Seisenbaeva, G. and Behers, L. 2018. Titania ($TiO_2$) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci. Rep. 8: 617.   DOI
2 Tiwari, D. K., Dasgupta-Schubert, N., Villasenor Cendejas, L. M., Villegas, J., Carreto Montoya, L. and Borjas García, S. E. 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 4: 577-591.   DOI
3 Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., Berugoda Arachchige, D. M. et al. 2017. Ureahydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11: 1214-1221.   DOI
4 Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M. et al. 2012. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci. Total Environ. 431: 197-208.   DOI
5 Liu, R. and Lal, R. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4: 5686.
6 Luyckx, M., Hausman, J. F., Lutts, S. and Guerriero, G. 2017. Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci. 8: 411.
7 Lyu, S., Wei, X., Chen, J., Wang, C., Wang, X. and Pan, D. 2017. Titanium as a beneficial element for crop production. Front. Plant Sci. 8: 597.   DOI
8 Mahakham, W., Sarmah, A. K., Maensiri, S. and Theerakulpisut, P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 7: 8263.   DOI
9 Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D. et al. 2016. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. U.S.A. 113: 10797-10801.   DOI
10 Manivannan, A. and Ahn, Y. K. 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front. Plant Sci. 8: 1346.   DOI
11 Marslin, G., Sheeba, C. J. and Franklin, G. 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant Sci. 8: 832.   DOI
12 Wang, X., Han, H., Liu, X., Gu, X., Chen, K. and Lu, D. 2012a. Multiwalled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart. Res. 14: 841.   DOI
13 Tong, Y., Wu, Y., Zhao, C., Xu, Y., Lu, J., Xiang, S. et al. 2017. Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J. Agric. Food Chem. 65: 7371-7378.   DOI
14 Walker, G. W., Kookana, R. S., Smith, N. E., Kah, M., Doolette, C. L., Reeves, P. T. et al. 2017. Ecological risk assessment of nano-enabled pesticides: a Perspective on problem formulation. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.1027b02373. (In press)
15 Wang, F., Liu, X., Shi, Z., Tong, R., Adams, C. A. and Shi, X. 2016a. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--a soil microcosm experiment. Chemosphere 147: 88-97.   DOI
16 Wang, Y.-J., Huang, Y., Anreddy, N., Zhang, G.-N., Zhang, Y.-K., Xie, M. et al. 2016b. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin. Oncotarget 7: 5877-5891.
17 Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C. and Xing, B. 2012b. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46: 4434-4441.   DOI
18 Anderson, A. J., McLean, J. E., Jacobson, A. R. and Britt, D. W. 2017a. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.1027b01302. (In press)
19 Adams, J., Wright, M., Wagner, H., Valiente, J., Britt, D. and Anderson, A. 2017. Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol. Biochem. 110: 108-117.   DOI
20 Adeleye, A. S., Conway, J. R., Perez, T., Rutten, P. and Keller, A. A. 2014. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ. Sci. Technol. 48: 12561-12568.   DOI
21 Burke, D. J., Pietrasiak, N., Situ, S. F., Abenojar, E. C., Porche, M., Kraj, P. et al. 2015. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int. J. Mol. Sci. 16: 23630-23650.   DOI
22 Watson, J. L., Fang, T., Dimkpa, C. O., Britt, D. W., McLean, J. E., Jacobson, A. and Anderson, A. J. 2015. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28: 101-112.   DOI
23 Wilson, M. A., Tran, N. H., Milev, A. S., Kannangara, G. S. K., Volk, H. and Lu, G. Q. M. 2008. Nanomaterials in soils. Geoderma 146: 291-302.   DOI
24 Anusuya, S. and Sathiyabama, M. 2015. Protection of turmeric plants from rhizome rot disease under field conditions by beta-D-glucan nanoparticle. Int. J. Biol. Macromol. 77: 9-14.   DOI
25 Ashkavand, P., Tabari, M., Zarafshar, M., Tomaskova, I. and Struve, D. 2015. Effect of $SiO_2$ nanoparticles on drought resistance in hawthorn seedlings. Forest Research Papers 76: 350-359.   DOI
26 Biswas, P. and Wu, C. Y. 2005. Nanoparticles and the environment. J. Air. Waste Manag. Assoc. 55: 708-746.   DOI
27 Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K. and Acharya, K. 2015. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci. Rep. 5: 15195.   DOI
28 Mushtaq, A., Jamil, N., Riaz, M., Hornyak, G. L., Ahmed, N., Shabbir Ahmed Rana, S. et al. 2017. Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. Biol. Forum. 9: 150-157.
29 Martinez-Fernandez, D. and Komarek, M. 2016. Comparative effects of nanoscale zero-valent iron (nZVI) and $Fe_2O_3$ nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ. Exp. Bot. 131: 128-136.   DOI
30 Martinez-Fernandez, D., Barroso, D. and Komarek, M. 2016. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ. Sci. Pollut. Res. Int. 23: 1732-1741.   DOI
31 Palmqvist, N. G., Bejai, S., Meijer, J., Seisenbaeva, G. A. and Kessler, V. G. 2015. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep. 5: 10146.   DOI
32 Palmqvist, N. G. M., Seisenbaeva, G. A., Svedlindh, P. and Kessler, V. G. 2017. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res. Lett.12: 631.   DOI
33 Paparella, S., Araujo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D. and Balestrazzi, A. 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34: 1281-1293.   DOI
34 Parisi, C., Vigani, M. and Rodriguez-Cerezo, E. 2015. Agricultural nanotechnologies: what are the current possibilities? Nano Today 10: 124-127.   DOI
35 Yang, J., Cao, W. and Rui, Y. 2017. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J. Plant Interact. 12: 158-169.   DOI
36 Wright, M., Adams, J., Yang, K., McManus, P., Jacobson, A., Gade, A. et al. 2016. A root-colonizing pseudomonad lessens stress responses in wheat imposed by CuO nanoparticles. PLoS One 11: e0164635.   DOI
37 Wu, L. and Liu, M. 2007. Slow-release potassium silicate fertilizer with the function of superabsorbent and water retention. Ind. Eng. Chem. Res. 46: 6494-6500.   DOI
38 Yadav, T., Mungray, A. A. and Mungray, A. K. 2014. Fabricated nanoparticles: current status and potential phytotoxic threats. Rev. Environ. Contam. Toxicol. 230: 83-110.
39 Yang, K.-Y., Doxey, S., McLean, J. E., Britt, D., Watson, A., Al Qassy, D. et al. 2018. Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany 96: 175-186.   DOI
40 Yuan, Z., Li, J., Cui, L., Xu, B., Zhang, H. and Yu, C. P. 2013. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90: 1404-1411.   DOI
41 Zabrieski, Z., Morrell, E., Hortin, J., Dimkpa, C., McLean, J., Britt, D. and Anderson, A. 2015. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24: 1305-1314.   DOI
42 Anderson, A., McLean, J., McManus, P. and Britt, D. 2017b. Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. Int. J. Nanotechnol. 14: 15-21.   DOI
43 Chen, H., Goldberg, M. S. and Villeneuve, P. J. 2008. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev. Environ. Health 23: 243-297.
44 Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15: 15-22.   DOI
45 Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R. et al. 2017. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 7: 9754.   DOI
46 Pinedo-Guerrero, Z. H., Hernandez-Fuentes, A. D., Ortega-Ortiz, H., Benavides-Mendoza, A., Cadenas-Pliego, G. and Juarez-Maldonado, A. A. 2017. Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeno pepper. Molecules 22: E926.   DOI
47 Pierret, A. and Lacombe, G. 2018. Hydrologic regulation of plant rooting depth: breakthrough or observational conundrum? Proc. Natl. Acad. Sci. U.S.A. 115: E2669-E2670.   DOI
48 Cooper, P. F., McBarnet, W., O'Donnell, D., McMahon, A., Houston, L. and Brian, M. 2010. The treatment of run-off from a fertiliser plant for nitrification, denitrification and phosphorus removal by use of constructed wetlands: a demonstration study. Water Sci. Technol. 61: 355-363.   DOI
49 Corradini, E., de Moura, M. R. and Mattoso, L. H. C. 2010. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express. Polym. Lett. 4: 509-515.   DOI
50 Da Costa, M. V. and Prabhat, K. S. 2015. Influence of titanium dioxide nanoparticles on the photosynthetic and biochemical processes in Oryza sativa. Int. J. Recent Sci. Res. 6: 2445-2451.
51 Prasad, A., Astete, C. E., Bodoki, A. E., Windham, M., Bodoki, E. and Sabliov, C. M. 2017. Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.1027b02487. (In press)
52 Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K. et al. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. U.S.A. 109: E2451-E2456.   DOI
53 Rai, M., Maliszewska, I., Ingle, A., Gupta, I. and Yadav, A. 2015. Diversity of microbes in synthesis of metal nanoparticles: progress and limitations in bio‐nanoparticles: biosynthesis and sustainable biotechnological implications. In: Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications, ed. by O. V. Singh, pp. 1-30. Wiley-Blackwell.
54 Raliya, R., Tarafdar, J. C. and Biswas, P. 2016. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 64: 3111-3118.   DOI
55 Dimkpa, C. O., Latta, D. E., McLean, J. E., Britt, D. W., Boyanov, M. I. and Anderson, A. J. 2013a. Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ. Sci. Technol. 47: 4734-4742.   DOI
56 Ze, Y., Liu, C., Wang, L., Hong, M. and Hong, F. 2011. The regulation of $TiO_2$ nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol. Trace Elem. Res. 143: 1131-1141.   DOI
57 Zhao, L., Huang, Y., Hu, J., Zhou, H., Adeleye, A. S. and Keller, A. A. 2016a. $^1H$ NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ. Sci. Technol. 50: 2000-2010.   DOI
58 Zhao, L., Ortiz, C., Adeleye, A. S., Hu, Q., Zhou, H., Huang, Y. et al. 2016b. Metabolomics to detect response of lettuce (Lactuca sativa) to $Cu(OH)_2$ nanopesticides: oxidative stress response and detoxification mechanisms. Environ. Sci. Technol. 50: 9697-9707.   DOI
59 Das, C. K., Srivastava, G., Dubey, A., Roy, M., Jain, S., Sethy, N. K. et al. 2016. Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol. Environ. Eng. 1: 2.   DOI
60 Dimkpa, C. O., Hansen, T., Stewart, J., McLean, J. E., Britt, D. W. and Anderson, A. J. 2015a. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9: 271-278.   DOI
61 Dimkpa, C. O., McLean, J. E., Britt, D. W. and Anderson, A. J. 2013b. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26: 913-924.   DOI
62 Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R. and Biswas, P. 2016. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agric. Food Chem. 64: 6148-6155.   DOI
63 Ristroph, K. D., Astete, C. E., Bodoki, E. and Sabliov, C. M. 2017. Zein nanoparticles uptake by hydroponically grown soybean plants. Environ. Sci. Technol. 51: 14065-14071.   DOI
64 Robles, C. and Cantu, M. 2017. Nanopesticides a real breakthrough for agriculture? Revista Bio. Ciencias. 4: 164-178.
65 Rousk, J., Ackermann, K., Curling, S. F. and Jones, D. L. 2012. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7: e34197.   DOI
66 Dimkpa, C. O., McLean, J. E., Britt, D. W. and Anderson, A. J. 2015b. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24: 119-129.   DOI
67 Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R. and Anderson, A. J. 2013c. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol. 47: 1082-1090.   DOI
68 Ruotolo, R., Maestri, E., Pagano, L., Marmiroli, M., White, J. C. and Marmiroli, N. 2018. Plant response to metal-containing engi-neered nanomaterials: an omics-based perspective. Environm. Sci. Technol. 52: 2451-2467.   DOI
69 Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology 15: 33.   DOI
70 Sarlak, N., Taherifar, A. and Salehi, F. 2014. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J. Agric. Food Chem. 62: 4833-4838.   DOI
71 Sathiyabama, M. and Charles, R. E. 2015. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydr. Polym. 133: 400-407.   DOI
72 Goodman, J., McLean, J. E., Britt, D. W. and Anderson, A. J. 2016. Sublethal doses of ZnO nanoparticles remodel production of cell signaling metabolites in the root colonizer Pseudomonas chlororaphis O6. Environ. Sci. Nano 3: 1103-1113.   DOI
73 Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K. and Duhan, S. 2017. Nanotechnology: the new perspective in precision agriculture. Biotechnol. Rep. 15: 11-23.   DOI
74 EPA. 2018. Nutrient pollution: the problem. URL https://www.epa.gov/nutrientpollution/problem/
75 Giroto, A. S., Guimaraes, G. G., Foschini, M. and Ribeiro, C. 2017. Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7: 46032.   DOI
76 Hao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A. et al. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front. Plant Sci. 8: 1332.   DOI
77 Hartland, A., Lead, J. R., Slaveykova, V. I., O'Carroll, D. and Valsami-Jones, E. 2013. The environmental significance of natural nanoparticles. Nature Education Knowledge 4: 7.
78 Henckens, M. L. C. M., van Ierland, E. C., Driessen, P. P. J. and Worrell, E. 2016. Mineral resources: geological scarcity, market price trends, and future generations. Resour. Policy 49: 102-111.   DOI
79 Sekhon, B. S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7: 31-53.
80 Seisenbaeva, G. A., Daniel, G., Nedelec, J. M. and Kessler, V. G. 2013. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide. Nanoscale 5: 3330-3336.   DOI
81 Servin, A. D. and White, J. C. 2016. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1: 9-12.   DOI
82 Siddiqi, K. S. and Husen, A. 2017. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 12: 92.   DOI
83 Hernandez-Hernandez, H., Gonzalez-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G. and Juarez-Maldonado, A. 2018. Effects of chitosan-PVA and Cu canoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23: 178.   DOI
84 Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L. and Yang, P. 2005. Effect of nano-$TiO_2$ on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 105: 269-279.   DOI
85 Shalaby, T. A., Bayoumi, Y., Abdalla, N., Taha, H., Alshaal, T., Shehata, S. et al. 2016. Nanoparticles, soils, plants and sustainable agriculture. In: Nanoscience in Food and Agriculture 1, eds. by S. Ranjan, N. Dasgupta and E. Lichtfouse. pp. 283-312. Springer International Publishing, Cham.
86 Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. and Pinelli, E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 232: 1-44.
87 Sharma, V. K., Filip, J., Zboril, R. and Varma, R. S. 2015. Natural inorganic nanoparticles-formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44: 8410-8423.   DOI
88 Stampoulis, D., Sinha, S. K. and White, J. C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environm.Sci. Technol. 43: 9473-9479.   DOI
89 Huang, Y., Zhao, L. and Keller, A. A. 2017. Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ. Sci. Technol. 51: 9774-9783.   DOI
90 Hortin, J. 2017. Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots. Biological Engineering, Utah State University, Logan, UT, USA.
91 Huang, Y., Wang, Y. J., Wang, Y., Yi, S., Fan, Z., Sun, L. et al. 2015. Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater. 25: 268-283.   DOI
92 Jacobson, A., Doxey, S., Potter, M., Adams, J., Britt, D., McManus, P. et al. 2018. Interactions between a plant probiotic and nanoparticles on plant responses related to drought tolerance. Ind. Bio-tech. (In press)
93 Joshi, A., Kaur, S., Dharamvir, K., Nayyar, H. and Verma, G. 2018. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 98: 3148-3160.
94 Kah, M. 2015. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3: 64.
95 Kookana, R. S., Boxall, A. B. A., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q. et al. 2014. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62: 4227-4240.   DOI
96 Tang, Y., He, R., Zhao, J., Nie, G., Xu, L. and Xing, B. 2016. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut. 212: 605-614.   DOI
97 Stone, D., Harper, B. J., Lynch, I., Dawson, K. and Harper, S. L. 2010. Exposure assessment: recommendations for nanotechnologybased pesticides. Int. J. Occup. Environ. Health 16: 467-474.   DOI
98 Sun, D., Hussain, H. I., Yi, Z., Siegele, R., Cresswell, T., Kong, L. and Cahill, D. M. 2014. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 33: 1389-1402.   DOI
99 Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res. 14: 1294.   DOI