흰쥐에서 허혈시간에 따라 재관류후 나타나는 근조직의 미세구조 변화에 allopurinol이 미치는 영향

Effect of Allopurinol on Ultrastructural Changes in Ischemia Reperfusion Injury to Skeletal Muscle of Rats After Graded Periods of Complete Ischemia

  • 백두진 (한양대학교 의과대학 해부학교실) ;
  • 전재홍 (한양대학교 의과대학 해부학교실)
  • Paik, Doo-Jin (Department of Anatomy, College of Medicine, Hanyang University) ;
  • Chun, Jae-Hong (Department of Anatomy, College of Medicine, Hanyang University)
  • 발행 : 1995.09.01

초록

It has been well known that ischemia and reperfusion injury to skeletal muscle following an acute arterial occlusion causes significant morbidity and mortality. The skeletal muscle, which contains high energy phosphate compounds, has ischemic tolerance. During the ischemia, the ATP is catalyzed to hypoxanthine anaerobically and hypoxanthine dehydrogenase is converted to xanthine oxidase. During reperfusion, the hypoxanthine is catalyzed to xanthine by xanthine oxidase under $O_2$, presence and that results in production of cytotoxic oxygen free radicals. These cytotoxic free radicals, $O_2^-,\;H_{2}O_2,\;OH^-$, are toxic and make lesions in skeletal muscle during reperfusion. The authors perform the present study to investigate the effects of allopurinol, the inhibitor of xanthine oxidase, on reperfused ischemic skeletal muscles by observing the ultrastructural changes of the muscle fibers. A total of 48 healthy Sprague-Dawley rats weighing from 200 g to 250 g were used as experimental animals. Under urethane(3.0mg/kg., IP) anesthesia, lower abdominal incision was done and the left common iliac artery were ligated by using vascular clamp for 1, 2 and 6 hours. The left rectus femoris muscles were obtained at 6 hours after the removal of vascular clamp. In the allopurinol pretreated group, 50mg/kg of allopurinol was administered once a day for 2 days and before 2 hours of ischemia. The specimens were sliced into $1mm^3$ and prepared by routine methods for electron microscopic observations. All preparations were stained with uranyl acetate and lead citrate, and then observed with Hitachi -600 transmission electron microscope. The results were as follows: 1. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats, decreased glycogen particles and electron density of mitochondrial matrix and dilated terminal cisternae are seen. In 2 hours ischemia/6 hours repersed rectus femoris muscles of rats, mitochondria with electron lucent matrix, irregularly dilated triad and spheromembranous bodies are observed. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats, irregularly arranged myofibrils, and many spheromembranous bodies, fat droplets and lysosome are seen. 2. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, decreased glycogen particle and dilated cisternae of sarcoplasmic reticulum and triad are observed. In 2 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol decreased electron density of mitochondrial matrix and spheromembranous bodies are seen. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, mitochondria with electron lucent matrix, spheromembranous bodies and dilated cisternae of sarcoplasmic reticulum and terminal cistern are observed. The results suggest that the allopurinol attenuates the damages of the skeletal muscles of rats during ischemia and reperfusion.

키워드