Anti-oxidative Activity of Ethyl acetate Fraction of the Dried Ginger in Caenorhabditis elegans

건강 에틸아세테이트 분획의 예쁜꼬마선충 내의 항산화 효과

  • Received : 2016.06.10
  • Accepted : 2016.06.21
  • Published : 2016.06.30

Abstract

Ginger (Zingiber officnale Roscoe, Zingiberaceae), which is a well-known food seasoning, has been used as a traditional medicine for the treatment of gastrointestinal disorder, vomiting and cough in Korea, China and Japan. Ethanol extract from the dried ginger (DG) was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions the ethyl acetate soluble fraction (EDG) showed the most potent DPPH radical scavenging and superoxide quenching activities. To know the effect of antioxidant activities of EDG, we tested the activities of superoxide dismutase (SOD) and catalase together with oxidative stress tolerance and intracellular ROS level in Caenorhabditis elegans. To investigate whether EDG-mediated increased stress tolerance was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain including CF1553. Consequently, EDG elevated SOD and catalase activities of C. elegans, reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, EDG-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Keywords

References

  1. Zhong, W., Liu, N., Xie, Y., Zhao, Y., Song, X. and Zhong, W. (2013) Antioxidant and anti-aging activities of mycelial polysaccharides from Lepista sordida. Int. J. Biol. Macromol. 60: 355-359. https://doi.org/10.1016/j.ijbiomac.2013.06.018
  2. Hsu, A.-L., Feng, Z., Hsieh, M.-Y. and Xu, X. Z. S. (2009) Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiol. Aging 30: 1498-1503. https://doi.org/10.1016/j.neurobiolaging.2007.12.007
  3. Perrone, G. G., Tan, S. X. and Dawes, I. W. (2008) Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
  4. den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science & Technology 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
  5. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417: 1-13. https://doi.org/10.1042/BJ20081386
  6. Pandey, R., Gupta, S., Shukla, V., Tandon, S. and Shukla, V. (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J. Exp. Biol. 51: 515-521.
  7. Shin, T. S., Kang, H. S., Kim, S. K., Lee, K. W. and Cho, B. W. (1999) Effect of natural and synthetic antioxidants on pH, POV, fatty acids composition and overall acceptability of cooked ground pork. J. Agri. Tech. & Dev. Inst. 3: 1-9.
  8. But, P. P. H., Kimura, T., Guo, J.-X. and Sung, C. K. (1997) International collation of traditional and folk medicine, 400. World Scientific, Singapore.
  9. Ma, J., Jin, X., Yang L. and Liu, Z.-L. (2004) Diarylheptanoids from the rhizomes of Zingiber officianle. Phytochemistry 65: 1137-1143. https://doi.org/10.1016/j.phytochem.2004.03.007
  10. Denniff, P., Macleod, I. and Whiting, A. A. (1980) Studies in the biosynthesis of [6]-gingerol, pungent principle of ginger (Zingiber officinale). J. Chem. Soc., Perkin Trans. 1 2637-2644.
  11. Hasan, I. H., El-Desouky, M. A., Hozayen, G. and Abd el Aziz, G. M. (2016) Protective effect of Zingiber officinale against CCl4-induced liver fibrosis is mediated through downregulating the $TGF-{\beta}1/Smad3$ and $NF-{\kappa}B/I{\kappa}B$ pathways. Pharmacology 97: 1-9.
  12. Mukherjee, S., Mukherjee, N., Saini, P., Roy, P. and Babu, S. P. (2015) Ginger extract ameliorates phosphamidon induced hepatotoxicity. Indian J. Exp. Biol. 53: 574-584.
  13. Wei, Q.-Y., Ma, J.-P., Cai, Y.-J., Yang, L. and Liu, Z.-L. (2005) Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J. Ethnopharmacol. 102: 177-184. https://doi.org/10.1016/j.jep.2005.05.043
  14. Shoji, N., Iwasa, A., Takemoto, T., Ishida, Y. and Ohizumi, Y. (1982) Cardiotonic principles of ginger (Zingiber officinale Roscoe). J. Pharm. Sci. 71: 1174-1175. https://doi.org/10.1002/jps.2600711025
  15. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  16. Thuong, P. T., Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
  17. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  18. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  19. Ibrahim, H. R., Hoq, M. I. and Aoki, T. (2007) Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 41: 631-640. https://doi.org/10.1016/j.ijbiomac.2007.08.005
  20. Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
  21. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  22. Lee, S.-M. (2014) Quality characteristics of apple jam added with ginger. Korean J. Culinary Res. 20: 79-88.
  23. Guha, S., Natarajan, O., Murbach, C. G., Dinh, J., Wilson, E. C., Cao, M., Zou, S. and Dong, Y. (2014) Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 21: 911-921.
  24. Saran, M. and Bors, W. (1990) Radical reaction in vivo - an overview. Radiat. Environ. Biophys. 29: 249-262. https://doi.org/10.1007/BF01210406
  25. Harman, D. (1956) Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300. https://doi.org/10.1093/geronj/11.3.298
  26. Berger, M. M. (2005) Can oxidative damage be treated nutritionally? Clin. Nutr. 24: 172-183. https://doi.org/10.1016/j.clnu.2004.10.003
  27. Bokov, A., Chaudhuri, A. and Richardson, A. (2004) The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  28. Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. https://doi.org/10.1038/35041687
  29. Sun, Y. (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 8: 583-599. https://doi.org/10.1016/0891-5849(90)90156-D
  30. Ghasemzadeh A, Jaafar, H. Z. and Rahmat, A. (2015) Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology. BMC Complement Altern. Med. 15: 258. https://doi.org/10.1186/s12906-015-0718-0
  31. Masuda, Y., Kikuzaki, H., Hisamoto, M. and Nakatani, N. (2004) Antioxidant properties of gingerol related compounds from ginger. BioFactors 21: 293-296. https://doi.org/10.1002/biof.552210157
  32. Justo, O. R., Simioni, P. U., Gabriel, D. L., Tamashiro, W. M., Rosa, Pde T. and Moraes, A. M. (2015) Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical $CO_2$ extraction on macrophage and tumor cell line: the influence of vehicle type. BMC Complement Altern. Med. 15: 390 https://doi.org/10.1186/s12906-015-0896-9
  33. Semwal, R. B., Semwa,l D. K., Combrinck, S. and Viljoen, A. M. (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 117: 554-568. https://doi.org/10.1016/j.phytochem.2015.07.012