Browse > Article

Antioxidant Activity of n-Butanol Fraction of Chaenomeles sinensis Fruit in Caenorhabditis elegans  

Kim, Jun Hyeong (College of Pharmacy, Woosuk University)
An, Chang Wan (College of Pharmacy, Woosuk University)
Kim, Yeong Jee (College of Pharmacy, Woosuk University)
Noh, Yun Jeong (College of Pharmacy, Woosuk University)
Kim, Su Jin (College of Pharmacy, Woosuk University)
Kim, Ju-Eun (College of Pharmacy, Woosuk University)
Shrestha, Abinash Chandra (College of Pharmacy, Woosuk University)
Ham, Ha-Neul (College of Pharmacy, Woosuk University)
Leem, Jae-Yoon (College of Pharmacy, Woosuk University)
Jo, Hyung-Kwon (Hanpoong Pharm. Co., LTD.)
Kim, Dae-Sung (Hanpoong Pharm. Co., LTD.)
Moon, Kwang Hyun (Sunchang Research Institute of Health and Longevity)
Lee, Jeong Ho (Sunchang Research Institute of Health and Longevity)
Jeong, Kyung Ok (Sunchang Research Institute of Health and Longevity)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.49, no.1, 2018 , pp. 40-46 More about this Journal
Abstract
Chaenomeles sinensis (Thouin) Koehne fruit (Rosaceae) has been used as a traditional medicine in Korea, Japan and China to treat sore throat, diarrhea and inflammation. The ethanol extract of C. sinensis fruit was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions, the n-butanol fraction showed the most potent DPPH radical scavenging and superoxide quenching activities. To verify antioxidant activities, the n-butanol fraction was checked the activities of superoxide dismutase (SOD) and catalase activities, and intracellular ROS levels and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, to see if increased stress tolerance of worms by treating of the n-butanol fraction was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain. Consequently, the n-butanol fraction elevated SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, the n-butanol fraction-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.
Keywords
Chaenomeles sinensis; Caenorhabditis elegans; Antioxidant; SOD; Catalase; ROS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Panieri, E. and Santoro, M. M. (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7: e2253.   DOI
2 Reina, M. and Martinez, A. (2018) A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput. Theor. Chem. 1123: 111-118.   DOI
3 Dai, Y., Shao, C., Piao, Y., Hu, H., Lu, K., Zhang, T., Jia, S., Wang, M. and Man, S. (2017) The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydr. Polym. 178: 34-40.   DOI
4 Ang, L. Z. P., Hashim, R., Sulaiman, S. F., Coulibaly, A. Y., Sulaiman, O., Kawamura, F. and Salleh, K. M. (2015) In vitro antioxidant and antidiabetic activites of Gluta torquata. Ind. Crops Prod. 76: 755-760.   DOI
5 Karthishwaran, K., Shamisi, S. O. S. O. A., Kurup, S. S., Sakkir, S. and Cheruth, A. J. (2018) Free-radical-scavenging and antioxidant capacities with special emphasis on enzyme activities and in vitro studies in Caralluma flava N. E. Br. Biotechnology & Biotechnological Equipment 32: 156-162.   DOI
6 Jeszka-Skowron, M., Stanisz, E. and De Pena, M. P. (2016) Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT-Food Sci. Tech. 73: 243-250.   DOI
7 Gallego, M., Mora, L., Reig, M. and Toldra, F. (2018) Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Res. Int. 105: 873-879.   DOI
8 Zhang, M., Zhao, R., Zhou, S., Liu, W., Liang, Y., Zhao, Z., Li, S., Wang, T., Wong, T. and Zhao, H. (2018) Chemical characterization and evaluation of the antioxidants in Chaenomeles fruits by an improved HPLC-TOF/MS coupled to an on-line DPPH-HPLC method. J. Environ. Sci. Health C. 36: 43-62.   DOI
9 Wang, Y., Wang, W., Wang, N., Tall, A. R. and Tabas, I. (2017) Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler. Thromb. Vasc. Biol. 37: e99-e107.   DOI
10 Kim, C. S., Subedi, L., Oh, J. S., Kim, S. Y., Choi, S. U. and Lee, K. R. (2017) Bioactive triterpenoids from the twigs of Chaenomeles sinensis. J. Nat. Prod. 80: 1134-1140.   DOI
11 Oku, H., Ueda, Y. and Ishiguro, K. (2003) Antipruritic effects of the fruits of Chaenomeles sinensis. Biol. Pharm. Bull. 26: 1031-1034.   DOI
12 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
13 Nagahora, N., Ito, Y. and Nagasawa, T. (2013). Dietary chinese quince polyphenols suppress generation of ${\alpha}$-dicarbonyl compounds in diabetic KK-A y mice. J. Agric. Food Chem. 61: 6629-6635.
14 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.   DOI
15 Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. Biochem. 59: 309-314.
16 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
17 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
18 Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
19 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI
20 Nagahora, N., Ito, Y. and Nagasawa, T. (2013) Dietary Chinese quince polyphenols suppress generation of ${\alpha}$-dicarbonyl compounds in diabetic KK-Ay mice. J. Agric. Food. Chem. 61: 6629-6635.   DOI
21 Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. and Shimomura, L. (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752-1761.
22 Kose, L. P., Gulcin, I., Goren, A. C., Namiesnik, J., Martinez-Ayala, A. L. and Gorinstein, S. (2015) LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 74: 712-721.   DOI
23 Sancheti, S., Sancheti, S., Bafna, M. and Seo, S. Y. (2010) Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur. Food Res. Technol. 231: 415-421.   DOI
24 Azarabadi, S., Abdollahi, H., Torabi, M., Salehi, Z. and Nasiri, J. (2016) ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). Eur. J. Plant Pathol. 147: 279-294.