DOI QR코드

DOI QR Code

The Power of Being Small: Nanosized Products for Agriculture

  • Anderson, Anne J. (Department of Biological Engineering, Utah State University)
  • Received : 2018.04.21
  • Accepted : 2018.05.01
  • Published : 2018.06.30

Abstract

Certain agrochemicals may be tuned for increased effectiveness when downsized to nanoparticles (NPs), where one dimension is less than 100 nm. The NPs may function as fertilizers, pesticides and products to improve plant health through seed priming, growth promotion, and induction of systemic tolerance to stress. Formulations will allow targeted applications with timed release, reducing waste and pollution when compared to treatments with bulk-size products. The NPs may be a single component, such as nano-ZnO as a fertilizer, or be composites of compatible materials, for example where N, P, and K plus micronutrients are available. The active materials could be loaded into porous carriers or tethered to base nanostructures. Coatings could include such natural products alginate, chitosan, zein, or silica. Certain NPs are taken up and transported in the plant's phloem and xylem so systemic effects are feasible. Timed and targeted release of the active product could be achieved in response to changes in pH or availability of ligands within the plant or the rhizosphere. Global research has revealed the many potentials offered by NP formulations to aid sustainability in agriculture. Current work will provide information needed by regulatory agencies to assess their safety in the agricultural setting.

Keywords

References

  1. Adams, J., Wright, M., Wagner, H., Valiente, J., Britt, D. and Anderson, A. 2017. Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol. Biochem. 110: 108-117. https://doi.org/10.1016/j.plaphy.2016.08.005
  2. Adeleye, A. S., Conway, J. R., Perez, T., Rutten, P. and Keller, A. A. 2014. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ. Sci. Technol. 48: 12561-12568. https://doi.org/10.1021/es5033426
  3. Anderson, A. J., McLean, J. E., Jacobson, A. R. and Britt, D. W. 2017a. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.1027b01302. (In press)
  4. Anderson, A., McLean, J., McManus, P. and Britt, D. 2017b. Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. Int. J. Nanotechnol. 14: 15-21. https://doi.org/10.1504/IJNT.2017.082438
  5. Anusuya, S. and Sathiyabama, M. 2015. Protection of turmeric plants from rhizome rot disease under field conditions by beta-D-glucan nanoparticle. Int. J. Biol. Macromol. 77: 9-14. https://doi.org/10.1016/j.ijbiomac.2015.02.053
  6. Ashkavand, P., Tabari, M., Zarafshar, M., Tomaskova, I. and Struve, D. 2015. Effect of $SiO_2$ nanoparticles on drought resistance in hawthorn seedlings. Forest Research Papers 76: 350-359. https://doi.org/10.1515/frp-2015-0034
  7. Biswas, P. and Wu, C. Y. 2005. Nanoparticles and the environment. J. Air. Waste Manag. Assoc. 55: 708-746. https://doi.org/10.1080/10473289.2005.10464656
  8. Burke, D. J., Pietrasiak, N., Situ, S. F., Abenojar, E. C., Porche, M., Kraj, P. et al. 2015. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int. J. Mol. Sci. 16: 23630-23650. https://doi.org/10.3390/ijms161023630
  9. Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K. and Acharya, K. 2015. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci. Rep. 5: 15195. https://doi.org/10.1038/srep15195
  10. Chen, H., Goldberg, M. S. and Villeneuve, P. J. 2008. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev. Environ. Health 23: 243-297.
  11. Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15: 15-22. https://doi.org/10.1007/s10311-016-0600-4
  12. Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R. et al. 2017. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 7: 9754. https://doi.org/10.1038/s41598-017-08571-0
  13. Cooper, P. F., McBarnet, W., O'Donnell, D., McMahon, A., Houston, L. and Brian, M. 2010. The treatment of run-off from a fertiliser plant for nitrification, denitrification and phosphorus removal by use of constructed wetlands: a demonstration study. Water Sci. Technol. 61: 355-363. https://doi.org/10.2166/wst.2010.801
  14. Corradini, E., de Moura, M. R. and Mattoso, L. H. C. 2010. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express. Polym. Lett. 4: 509-515. https://doi.org/10.3144/expresspolymlett.2010.64
  15. Da Costa, M. V. and Prabhat, K. S. 2015. Influence of titanium dioxide nanoparticles on the photosynthetic and biochemical processes in Oryza sativa. Int. J. Recent Sci. Res. 6: 2445-2451.
  16. Das, C. K., Srivastava, G., Dubey, A., Roy, M., Jain, S., Sethy, N. K. et al. 2016. Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol. Environ. Eng. 1: 2. https://doi.org/10.1007/s41204-016-0002-7
  17. Dimkpa, C. O., Hansen, T., Stewart, J., McLean, J. E., Britt, D. W. and Anderson, A. J. 2015a. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9: 271-278. https://doi.org/10.3109/17435390.2014.900583
  18. Dimkpa, C. O., Latta, D. E., McLean, J. E., Britt, D. W., Boyanov, M. I. and Anderson, A. J. 2013a. Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ. Sci. Technol. 47: 4734-4742. https://doi.org/10.1021/es304736y
  19. Dimkpa, C. O., McLean, J. E., Britt, D. W. and Anderson, A. J. 2013b. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26: 913-924. https://doi.org/10.1007/s10534-013-9667-6
  20. Dimkpa, C. O., McLean, J. E., Britt, D. W. and Anderson, A. J. 2015b. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24: 119-129. https://doi.org/10.1007/s10646-014-1364-x
  21. Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R. and Anderson, A. J. 2013c. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol. 47: 1082-1090. https://doi.org/10.1021/es302973y
  22. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K. and Duhan, S. 2017. Nanotechnology: the new perspective in precision agriculture. Biotechnol. Rep. 15: 11-23. https://doi.org/10.1016/j.btre.2017.03.002
  23. EPA. 2018. Nutrient pollution: the problem. URL https://www.epa.gov/nutrientpollution/problem/
  24. Giroto, A. S., Guimaraes, G. G., Foschini, M. and Ribeiro, C. 2017. Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7: 46032. https://doi.org/10.1038/srep46032
  25. Goodman, J., McLean, J. E., Britt, D. W. and Anderson, A. J. 2016. Sublethal doses of ZnO nanoparticles remodel production of cell signaling metabolites in the root colonizer Pseudomonas chlororaphis O6. Environ. Sci. Nano 3: 1103-1113. https://doi.org/10.1039/C6EN00135A
  26. Hao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A. et al. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front. Plant Sci. 8: 1332. https://doi.org/10.3389/fpls.2017.01332
  27. Hartland, A., Lead, J. R., Slaveykova, V. I., O'Carroll, D. and Valsami-Jones, E. 2013. The environmental significance of natural nanoparticles. Nature Education Knowledge 4: 7.
  28. Henckens, M. L. C. M., van Ierland, E. C., Driessen, P. P. J. and Worrell, E. 2016. Mineral resources: geological scarcity, market price trends, and future generations. Resour. Policy 49: 102-111. https://doi.org/10.1016/j.resourpol.2016.04.012
  29. Hernandez-Hernandez, H., Gonzalez-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G. and Juarez-Maldonado, A. 2018. Effects of chitosan-PVA and Cu canoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23: 178. https://doi.org/10.3390/molecules23010178
  30. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L. and Yang, P. 2005. Effect of nano-$TiO_2$ on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 105: 269-279. https://doi.org/10.1385/BTER:105:1-3:269
  31. Hortin, J. 2017. Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots. Biological Engineering, Utah State University, Logan, UT, USA.
  32. Huang, Y., Zhao, L. and Keller, A. A. 2017. Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ. Sci. Technol. 51: 9774-9783. https://doi.org/10.1021/acs.est.7b02523
  33. Huang, Y., Wang, Y. J., Wang, Y., Yi, S., Fan, Z., Sun, L. et al. 2015. Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater. 25: 268-283. https://doi.org/10.1016/j.actbio.2015.07.035
  34. Jacobson, A., Doxey, S., Potter, M., Adams, J., Britt, D., McManus, P. et al. 2018. Interactions between a plant probiotic and nanoparticles on plant responses related to drought tolerance. Ind. Bio-tech. (In press)
  35. Joshi, A., Kaur, S., Dharamvir, K., Nayyar, H. and Verma, G. 2018. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 98: 3148-3160.
  36. Kah, M. 2015. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3: 64.
  37. Kookana, R. S., Boxall, A. B. A., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q. et al. 2014. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62: 4227-4240. https://doi.org/10.1021/jf500232f
  38. Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., Berugoda Arachchige, D. M. et al. 2017. Ureahydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11: 1214-1221. https://doi.org/10.1021/acsnano.6b07781
  39. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M. et al. 2012. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci. Total Environ. 431: 197-208. https://doi.org/10.1016/j.scitotenv.2012.04.073
  40. Liu, R. and Lal, R. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4: 5686.
  41. Luyckx, M., Hausman, J. F., Lutts, S. and Guerriero, G. 2017. Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci. 8: 411.
  42. Lyu, S., Wei, X., Chen, J., Wang, C., Wang, X. and Pan, D. 2017. Titanium as a beneficial element for crop production. Front. Plant Sci. 8: 597. https://doi.org/10.3389/fpls.2017.00597
  43. Mahakham, W., Sarmah, A. K., Maensiri, S. and Theerakulpisut, P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 7: 8263. https://doi.org/10.1038/s41598-017-08669-5
  44. Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D. et al. 2016. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. U.S.A. 113: 10797-10801. https://doi.org/10.1073/pnas.1605941113
  45. Manivannan, A. and Ahn, Y. K. 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front. Plant Sci. 8: 1346. https://doi.org/10.3389/fpls.2017.01346
  46. Marslin, G., Sheeba, C. J. and Franklin, G. 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant Sci. 8: 832. https://doi.org/10.3389/fpls.2017.00832
  47. Martinez-Fernandez, D. and Komarek, M. 2016. Comparative effects of nanoscale zero-valent iron (nZVI) and $Fe_2O_3$ nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ. Exp. Bot. 131: 128-136. https://doi.org/10.1016/j.envexpbot.2016.07.010
  48. Martinez-Fernandez, D., Barroso, D. and Komarek, M. 2016. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ. Sci. Pollut. Res. Int. 23: 1732-1741. https://doi.org/10.1007/s11356-015-5423-5
  49. Mushtaq, A., Jamil, N., Riaz, M., Hornyak, G. L., Ahmed, N., Shabbir Ahmed Rana, S. et al. 2017. Synthesis of silica nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. Biol. Forum. 9: 150-157.
  50. Palmqvist, N. G., Bejai, S., Meijer, J., Seisenbaeva, G. A. and Kessler, V. G. 2015. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep. 5: 10146. https://doi.org/10.1038/srep10146
  51. Palmqvist, N. G. M., Seisenbaeva, G. A., Svedlindh, P. and Kessler, V. G. 2017. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res. Lett.12: 631. https://doi.org/10.1186/s11671-017-2404-2
  52. Paparella, S., Araujo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D. and Balestrazzi, A. 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34: 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  53. Parisi, C., Vigani, M. and Rodriguez-Cerezo, E. 2015. Agricultural nanotechnologies: what are the current possibilities? Nano Today 10: 124-127. https://doi.org/10.1016/j.nantod.2014.09.009
  54. Pierret, A. and Lacombe, G. 2018. Hydrologic regulation of plant rooting depth: breakthrough or observational conundrum? Proc. Natl. Acad. Sci. U.S.A. 115: E2669-E2670. https://doi.org/10.1073/pnas.1801721115
  55. Pinedo-Guerrero, Z. H., Hernandez-Fuentes, A. D., Ortega-Ortiz, H., Benavides-Mendoza, A., Cadenas-Pliego, G. and Juarez-Maldonado, A. A. 2017. Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeno pepper. Molecules 22: E926. https://doi.org/10.3390/molecules22060926
  56. Prasad, A., Astete, C. E., Bodoki, A. E., Windham, M., Bodoki, E. and Sabliov, C. M. 2017. Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.1027b02487. (In press)
  57. Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K. et al. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. U.S.A. 109: E2451-E2456. https://doi.org/10.1073/pnas.1205431109
  58. Rai, M., Maliszewska, I., Ingle, A., Gupta, I. and Yadav, A. 2015. Diversity of microbes in synthesis of metal nanoparticles: progress and limitations in bio‐nanoparticles: biosynthesis and sustainable biotechnological implications. In: Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications, ed. by O. V. Singh, pp. 1-30. Wiley-Blackwell.
  59. Raliya, R., Tarafdar, J. C. and Biswas, P. 2016. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 64: 3111-3118. https://doi.org/10.1021/acs.jafc.5b05224
  60. Ristroph, K. D., Astete, C. E., Bodoki, E. and Sabliov, C. M. 2017. Zein nanoparticles uptake by hydroponically grown soybean plants. Environ. Sci. Technol. 51: 14065-14071. https://doi.org/10.1021/acs.est.7b03923
  61. Robles, C. and Cantu, M. 2017. Nanopesticides a real breakthrough for agriculture? Revista Bio. Ciencias. 4: 164-178.
  62. Rousk, J., Ackermann, K., Curling, S. F. and Jones, D. L. 2012. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7: e34197. https://doi.org/10.1371/journal.pone.0034197
  63. Ruotolo, R., Maestri, E., Pagano, L., Marmiroli, M., White, J. C. and Marmiroli, N. 2018. Plant response to metal-containing engi-neered nanomaterials: an omics-based perspective. Environm. Sci. Technol. 52: 2451-2467. https://doi.org/10.1021/acs.est.7b04121
  64. Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L. and Adam, V. 2017. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnology 15: 33. https://doi.org/10.1186/s12951-017-0268-3
  65. Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R. and Biswas, P. 2016. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J. Agric. Food Chem. 64: 6148-6155. https://doi.org/10.1021/acs.jafc.6b02239
  66. Sarlak, N., Taherifar, A. and Salehi, F. 2014. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J. Agric. Food Chem. 62: 4833-4838. https://doi.org/10.1021/jf404720d
  67. Sathiyabama, M. and Charles, R. E. 2015. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydr. Polym. 133: 400-407. https://doi.org/10.1016/j.carbpol.2015.07.066
  68. Seisenbaeva, G. A., Daniel, G., Nedelec, J. M. and Kessler, V. G. 2013. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide. Nanoscale 5: 3330-3336. https://doi.org/10.1039/c3nr34068f
  69. Sekhon, B. S. 2014. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7: 31-53.
  70. Servin, A. D. and White, J. C. 2016. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1: 9-12. https://doi.org/10.1016/j.impact.2015.12.002
  71. Shalaby, T. A., Bayoumi, Y., Abdalla, N., Taha, H., Alshaal, T., Shehata, S. et al. 2016. Nanoparticles, soils, plants and sustainable agriculture. In: Nanoscience in Food and Agriculture 1, eds. by S. Ranjan, N. Dasgupta and E. Lichtfouse. pp. 283-312. Springer International Publishing, Cham.
  72. Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. and Pinelli, E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 232: 1-44.
  73. Sharma, V. K., Filip, J., Zboril, R. and Varma, R. S. 2015. Natural inorganic nanoparticles-formation, fate, and toxicity in the environment. Chem. Soc. Rev. 44: 8410-8423. https://doi.org/10.1039/C5CS00236B
  74. Siddiqi, K. S. and Husen, A. 2017. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 12: 92. https://doi.org/10.1186/s11671-017-1861-y
  75. Stampoulis, D., Sinha, S. K. and White, J. C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environm.Sci. Technol. 43: 9473-9479. https://doi.org/10.1021/es901695c
  76. Stone, D., Harper, B. J., Lynch, I., Dawson, K. and Harper, S. L. 2010. Exposure assessment: recommendations for nanotechnologybased pesticides. Int. J. Occup. Environ. Health 16: 467-474. https://doi.org/10.1179/oeh.2010.16.4.467
  77. Sun, D., Hussain, H. I., Yi, Z., Siegele, R., Cresswell, T., Kong, L. and Cahill, D. M. 2014. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 33: 1389-1402. https://doi.org/10.1007/s00299-014-1624-5
  78. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res. 14: 1294. https://doi.org/10.1007/s11051-012-1294-6
  79. Tang, Y., He, R., Zhao, J., Nie, G., Xu, L. and Xing, B. 2016. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut. 212: 605-614. https://doi.org/10.1016/j.envpol.2016.03.019
  80. Timmusk, S., Seisenbaeva, G. and Behers, L. 2018. Titania ($TiO_2$) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci. Rep. 8: 617. https://doi.org/10.1038/s41598-017-18939-x
  81. Tiwari, D. K., Dasgupta-Schubert, N., Villasenor Cendejas, L. M., Villegas, J., Carreto Montoya, L. and Borjas García, S. E. 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 4: 577-591. https://doi.org/10.1007/s13204-013-0236-7
  82. Tong, Y., Wu, Y., Zhao, C., Xu, Y., Lu, J., Xiang, S. et al. 2017. Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J. Agric. Food Chem. 65: 7371-7378. https://doi.org/10.1021/acs.jafc.7b02197
  83. Walker, G. W., Kookana, R. S., Smith, N. E., Kah, M., Doolette, C. L., Reeves, P. T. et al. 2017. Ecological risk assessment of nano-enabled pesticides: a Perspective on problem formulation. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.1027b02373. (In press)
  84. Wang, F., Liu, X., Shi, Z., Tong, R., Adams, C. A. and Shi, X. 2016a. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--a soil microcosm experiment. Chemosphere 147: 88-97. https://doi.org/10.1016/j.chemosphere.2015.12.076
  85. Wang, X., Han, H., Liu, X., Gu, X., Chen, K. and Lu, D. 2012a. Multiwalled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart. Res. 14: 841. https://doi.org/10.1007/s11051-012-0841-5
  86. Wang, Y.-J., Huang, Y., Anreddy, N., Zhang, G.-N., Zhang, Y.-K., Xie, M. et al. 2016b. Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin. Oncotarget 7: 5877-5891.
  87. Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C. and Xing, B. 2012b. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46: 4434-4441. https://doi.org/10.1021/es204212z
  88. Watson, J. L., Fang, T., Dimkpa, C. O., Britt, D. W., McLean, J. E., Jacobson, A. and Anderson, A. J. 2015. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28: 101-112. https://doi.org/10.1007/s10534-014-9806-8
  89. Wilson, M. A., Tran, N. H., Milev, A. S., Kannangara, G. S. K., Volk, H. and Lu, G. Q. M. 2008. Nanomaterials in soils. Geoderma 146: 291-302. https://doi.org/10.1016/j.geoderma.2008.06.004
  90. Wright, M., Adams, J., Yang, K., McManus, P., Jacobson, A., Gade, A. et al. 2016. A root-colonizing pseudomonad lessens stress responses in wheat imposed by CuO nanoparticles. PLoS One 11: e0164635. https://doi.org/10.1371/journal.pone.0164635
  91. Wu, L. and Liu, M. 2007. Slow-release potassium silicate fertilizer with the function of superabsorbent and water retention. Ind. Eng. Chem. Res. 46: 6494-6500. https://doi.org/10.1021/ie070573l
  92. Yadav, T., Mungray, A. A. and Mungray, A. K. 2014. Fabricated nanoparticles: current status and potential phytotoxic threats. Rev. Environ. Contam. Toxicol. 230: 83-110.
  93. Yang, J., Cao, W. and Rui, Y. 2017. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J. Plant Interact. 12: 158-169. https://doi.org/10.1080/17429145.2017.1310944
  94. Yang, K.-Y., Doxey, S., McLean, J. E., Britt, D., Watson, A., Al Qassy, D. et al. 2018. Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany 96: 175-186. https://doi.org/10.1139/cjb-2017-0124
  95. Yuan, Z., Li, J., Cui, L., Xu, B., Zhang, H. and Yu, C. P. 2013. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90: 1404-1411. https://doi.org/10.1016/j.chemosphere.2012.08.032
  96. Zabrieski, Z., Morrell, E., Hortin, J., Dimkpa, C., McLean, J., Britt, D. and Anderson, A. 2015. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24: 1305-1314. https://doi.org/10.1007/s10646-015-1505-x
  97. Ze, Y., Liu, C., Wang, L., Hong, M. and Hong, F. 2011. The regulation of $TiO_2$ nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol. Trace Elem. Res. 143: 1131-1141. https://doi.org/10.1007/s12011-010-8901-0
  98. Zhao, L., Huang, Y., Hu, J., Zhou, H., Adeleye, A. S. and Keller, A. A. 2016a. $^1H$ NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ. Sci. Technol. 50: 2000-2010. https://doi.org/10.1021/acs.est.5b05011
  99. Zhao, L., Ortiz, C., Adeleye, A. S., Hu, Q., Zhou, H., Huang, Y. et al. 2016b. Metabolomics to detect response of lettuce (Lactuca sativa) to $Cu(OH)_2$ nanopesticides: oxidative stress response and detoxification mechanisms. Environ. Sci. Technol. 50: 9697-9707. https://doi.org/10.1021/acs.est.6b02763