• Title/Summary/Keyword: $H_2$/CO 합성가스

Search Result 260, Processing Time 0.033 seconds

EINOx scaling of H2/CO Syngas Non-premixed Turbulent Jet Flame (H2/CO 합성가스의 난류 제트 확산화염에서 EINOx Scaling)

  • Hwang, Jeongjae;Sohn, Kitae;Kim, Taesung;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.55-58
    • /
    • 2012
  • EINOx scaling for $H_2/CO$ non-premixed turbulent jet flame was conducted. NOx concentration and flame length were measured simultaneously with varying flow conditions. Flame length increases with Reynolds number which means the flames in buoyancy-momentum transition region. We assessed the previous Chen & Driscoll's scaling with present results. However, the scaling cannot satisfy the present results. We proposed new scaling which is addressed the simplified flame residence time. The new scaling satisfies the results of $H_2/CO$ syngas flame as well as pure hydrogen flames.

  • PDF

Modeling of the gasifier section for IGCC plant (IGCC 플랜트에 적용할 가스화기부의 모델링)

  • Park, Jin-Hoo;Kim, Tae-Hyun;Go, Young-Gun;Choi, Sang-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.445-448
    • /
    • 2007
  • 석탄가스화 복합발전(IGCC)에서 석탄 가스화 기술이 전 공정의 성능에 큰 영향을 미치는 중요한 요소이다. 연료 및 산화제의 공급방식, 가스화기의 기본 구조, 벽면의 구성 방식, 용융 슬랙 및 생산되는 합성가스 배출 방식 등에 따라 가스화의 성능이 영향을 받는다. IGCC plant의 정확한 성능 해석을 위해서는 석탄가스화기 공정 모델의 정밀도를 높일 필요성이 있다. 기존의 열병합 발전 사이클 해석에서 적용되었던 열 및 물질정산과 평형계산 방식을 통하여 석탄가스화기 공정을 해석하는 방법을 확인, 정리하고 이를 개선하기 위한 절차 및 방안을 제시하고자 한다. 가스화기 내부 공정을 크게 탈휘발과 가스화의 단계로 구분하여 가스화기 출구조건을 예측하였으며, ASPEN PLUS를 이용한 공정해석을 실시하였다. 가스화기 출구에서의 합성가스는 주생성가스인 CO, $H_2$를 위주로 하여 조성을 얻을 수 있고, 그 결과들을 선행연구들과의 비교를 통하여 가스화기 모델의 분석을 실시한다. 그리고 가스화기 해석의 정밀도를 높이기 위한 향후 고려될 가스화기 모델에 관하여 논의한다.

  • PDF

Methanation with Variation of Temperature and Space Velocity on Ni Catalysts (니켈촉매를 이용한 온도 및 공간속도 변화에 따른 메탄화 반응 특성)

  • Kim, Sy-Hyun;Yoo, Young-Don;Ryu, Jae-Hong;Byun, Chang-Dae;Lim, Hyo-Jun;Kim, Hyung-Taek
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.30-40
    • /
    • 2010
  • Syngas from gasification of coal can be converted to SNG(Synthesis Natural Gas) through gas cleaning, water gas shift, $CO_2$ removal, and methanation. One of the key technologies involved in the production of SNG is the methanation process. In the methanation process, carbon oxide is converted into methane by reaction with hydrogen. Major factors of methanation are hydrogen-carbon oxide ratio, reaction temperature and space velocity. In order to understand the catalytic behavior, temperature programmed surface reaction (TPSR) experiments and reaction in a fixed bed reactor of carbon monoxide have been performed using two commercial catalyst with different Ni contents (Catalyst A, B). In case of catalyst A, CO conversion was over 99% at the temperature range of $350{\sim}420^{\circ}C$ and CO conversions and $CH_4$ selectivity were lower at the space condition over 3000 1/h. In case of catalyst B, CO conversion was 100% at the temperature over $370^{\circ}C$ and CO conversions and $CH_4$ selectivity were lower at the space condition over 4700 1/h. Also, conditions to satisfy $CH_4$ productivity over 500 ml/h.g-cat were over 2000 1/h of space velocity in case of catalyst A and over 2300 1/h of space velocity in case of catalyst B.

Coal Gasification Performance with Key Operating Variables (주요 운전 변수에 따른 석탄의 가스화 성능 예측)

  • Lee, Seung-Jong;Chung, Seok-Woo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.437-440
    • /
    • 2007
  • Gasification converts coal and other feedstocks into a very clean and usable gas, called syngas, that can be used to produce a wide variety products such as electricity, chemicals, transports fuels, hydrogen production, etc. This paper was studied the gasification performance effects with the variation of the gasification operating parameters such as the feeding amounts of oxygen, steam and coal. When $O_2/coal$ ratio was below 0.8, $H_2$ mole % was increased as increasing $O_2/coal$ ratio. CO mole % was increased when $O_2/coal$ ratio was below 1.2 as increasing the $O_2/coal$ ratio. As increasing steam/coal ratio, $H_2$ mole %was increased and CO mole % was decreased. The $O_2/coal$ and steam/coal ratio was $0.8{\sim}0.9$ and $0.0{\sim}0.4$, respectively, to keep the proper gasification condition that the gasifier temperature was $1300^{\circ}C{\sim}1450^{\circ}C$ and the cold gas efficiency was over 76%.

  • PDF

Combustion and Emission Characteristics in a High Compression Ratio Spark Ignition Engine using Off-gas from FT reaction (FT반응 Off-gas를 이용한 고압축비 전기점화 엔진의 연소 및 배기가스 특성에 관한 연구)

  • Chung, Tahn;Lee, Junsun;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.114-121
    • /
    • 2018
  • FT process is a technology of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. During the FT process unreacted gas, known as Off-gas which has low-calorie, is discharged. In this study, we developed an engine that utilize simulated Off-gas, and studied the characteristics of the engine. The off-gas composition is assumed to be $H_2$ 70%, CO 15%, $CO_2$ 15% respectively. Under stoichiometric air-fuel ratio, the experiment was conducted at WOT and IMEP 0.3 Mpa changing compression ratio. Ignition timing was applied with MBT timing. Maximum indicated thermal efficiency 37% was achieved at compression ratio 15 under WOT. CO, $CO_2$ and $NO_x$ were influenced by changing compression ratio, and CO emission was satisfied with the US Tier 4 standard for nonroad engine over the entire experimental conditions.

A Study on the Lifted Flame Structure with Strain Rates in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 신장률에 따른 부상된 화염 구조에 관한 연구)

  • SIM, KEUNSEON;JANG, BYOUNGLOK;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.347-356
    • /
    • 2015
  • A study has been conducted numerically to investigate the lifted flat syngas flame structure of impinging jet flame configuration with the global strain rates in 10% hydrogen content. In this study, the effects of strain rate were major parameters on chemistry kinetics and flame structure at stagnation point. The numerical results were calculated by SPIN application of the CHEMKIN package. The strain rates were adjusted with Reynolds numbers of premixed syngas-air mixture. Different flame shapes were observed with different strain rates. As strain rate has increased, the flame temperature and axial velocity have been decreased due to the flame heat loss increment, and the OH radical reaction zones become narrower but each mole fractions are still constant. Also, the reversion of $H_2O$ product near stagnation point has been found out when strain rate has increased. This phenomenon is attributed to the rapid production of oxidizing radical reaction such as the R12 ($H+O_2(+M)=HO_2(+M)$), which makes the R18 ($HO_2+OH=O_2+H_2O$) reaction increment.

Development and efficiency evaluation of 30kW scale syngas cogeneration system (30kW 급 합성가스 열병합 시스템 개발 및 효율 성능평가)

  • Park, Il-Gun;Kim, Sang-Tae;Noh, Gwi-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1427-1433
    • /
    • 2019
  • In this paper, Gas engine was tested for the energy of synthesis gas. As excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 in 1800 rpm and synthesis gas, thermal efficiency generally decrease and power generation was 34 kWm at λ 1.4. And excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4 in power generation 34 kWm, thermal efficiency generally increase 34.2%, 36.9%, 37.2%, 37.4%, 38.1%. Total efficiency through power generation consumes 38.7 kg/h of fuel at 30 kWe load and recovers 57.3% of waste heat by recovering 57.3 kW of waste heat through 32.1% power generation efficiency and heat recovery from cooling water and exhaust gas. The total efficiency was 85.8%.

NOx Reduction in Flue Gas Using Ammonia and Urea solution (암모니아와 요소용액을 이용한 배출가스내 질소산화물 저감 비교 평가)

  • 임영일;이정빈;유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.236-239
    • /
    • 1995
  • 50 kW$_{th}$ 용량의 기체연료버너에서 암모니아 기체와 요소용액을 이용한 선택적 무촉매 환원법 (SNCR;Selective Non-catalytic Reduction) 으로 질소산화물 (NOx) 저감에 관하여 연구하였다. 암모니아는 요소요액보다 더 낮은 반응온도에서 더 높은 효율을 보여주지만 경제성과 암모니아의 부식성 및 맹독성으로 인하여 취급하기에 곤란한 점이 있다. 반면에 요소용액은 적절한 액상첨가제와 기상첨가제를 사용하여 넓은 반응온도범위에서 높은 효율을 얻을 수 있으며 공정상의 조업비를 절감할 수 있다. 본 실험에서는 액상 첨가제인 $CH_3$OH 와 $C_2$H$_{5}$OH 을 사용하여 5$0^{\circ}C$ 정도의 최적반응온도 감소를 얻었으며 LPG 와 합성가스(CH$_4$:CO:H$_2$:$CO_2$=1:4:4:2) 틀 기상 첨가제로 사용하여 높은 질소산화물 저감 효율을 관찰하였다.

  • PDF

Stability Characteristics of Syngas($H_2$/CO)/Air Premixed Flames using an Impinging Jet Burner (충돌제트 버너에서 합성가스($H_2$/CO)/공기 예혼합화염의 안정화 특성)

  • Park, Ju-Yong;Lee, Kee-Man;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • An experimental study was conducted to investigate the flame stability of the synthetic gas (syngas) using an impinging premixed jet burner. Since the syngas mainly consisted of $H_2$ and CO, the $H_2$/CO mixture was simulated as the syngas. $H_2$/CO mixture ratios, fuel/air mixture velocities and equivalence ratios were used as major parameters on the flame stabilitym The role of the impinging plate on the flame stability was also examined. In addition, laminar burning velocities of the $H_2$/CO mixture were predicted numerically to understand the characteristics of the flame stability for the syngas. The increase in the H2 concentration into the syngas brings about the extension of the blowout limit and the reduction in the flashback limit in terms of the stable flame region. The impinging jet plate broadened the blowout limit but does not play important role in changing of the flashback limit. Finally, it was found that the stability region of the flame using the syngas, which is expressed in terms of the mixture velocity and the equivalence ratio in this study, significantly differed from that of $CH_4$.

Removal of CO2 from Syngas(CO2 and H2) Using Nanoporous Na2CO3/Al2O3 Adsorbents (나노기공성 Na2CO3/Al2O3 흡착제를 이용한 합성가스(CO2, H2) 내 CO2 제거)

  • Bae, Jong-Soo;Park, Joo-Won;Kim, Jae-Ho;Lee, Jae-Goo;Kim, Younghun;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.646-650
    • /
    • 2009
  • Hydrocarbon gases generated from the gasification of waste could be converted into $CO_2$ and $H_2$ using reforming catalysts and then $CO_2$ was selectively adsorbed and removed to obtain pure hydrogen. To optimize adsorption efficiency for $CO_2$ removal, $Na_2CO_3$ was supported on nanoporous alumina and the efficiency was compared with commercial alumina(Degussa). Nanoporous adsorbents formed more uniform pores and larger surface area compared to adsorbents using commercial alumina. The increase of $Na_2CO_3$ loading improved adsorption of $CO_2$. Finally, the highest adsorption capacity per unit mass of $Na_2CO_3$ could be achieved when the loading of $Na_2CO_3$ reached up to 20wt%. When the content of $Na_2CO_3$ increased above 20 wt%, it aggregated on the surface, and the pore volume was decreased. Used adsorbents could be recycled by the thermal treatment.