• Title/Summary/Keyword: $H_{\infty}$Controller

Search Result 572, Processing Time 0.025 seconds

A Study on the Design of Robust Simulation Controller of Magnetic Levitation System(I) (자기부상 시스템의 강인한 제어기 설계에 관한 연구(I) -시뮬레이션을 중심으로-)

  • 양주호;김창화;정석권;김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.84-90
    • /
    • 1995
  • The magnetic levitation system has great advantages, such as little friction, no lubrication no noise and so on. The magnetic levitation system need a stabilizing controller because it is a unstable system in natural. This paper presents the robust stabilizing controller design of the magnetic levitation system. The controller which is designed in this paper by $H_{infty}$ control theory is robust servo controller which has zero offset in spite of the model uncertainties. The validity of controller was investigater through the response simulation. In the future, we will use the result of this study at the actual magnetic levitation system.

  • PDF

Robust Synchronous Control of a Two-Axes Driving System using Coupling Structure (커플링구조를 이용한 2축 구동시스템의 강인한 위치동기제어)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.248-252
    • /
    • 2002
  • In this study, a synchronous controller which can be applied to two-axes position synchronization has been developed. The synchronous control system based on coupling structure has been composed of speed and synchronous controller. The speed controller has been designed to fellow speed reference. And the synchronous controller has been designed in the view point of accurate synchronization and robust stability by $H_{\infty}$ approach. The effectiveness of the designed synchronous controller has been demonstrated by experiment.

  • PDF

$H^{\infty}$-optimization using the modified interpolation algorithm (개선된 보간 알고리즘을 이용한 $H^{\infty}$-최적화)

  • 이태형;윤한오;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.46-51
    • /
    • 1991
  • An algorithm of finding a solution to an $H^{\infty}$-minimization problem is proposed, and the solution is obtained explicity in terms of closed-form. We construct an optimal controller subject to the interpolation constraints such that $H^{\infty}$-norm and the minimized value of transfer function matrix are equal.l.

  • PDF

T-S Fuzzy Control of IPMSM using Weighted Integral Action (가중적분을 이용한 IPMSM의 T-S 퍼지 제어)

  • Hwang, Tae Hwan;Kim, Tae Kue;Park, Seung Kyu;Ahn, Ho Gyun;Yoon, Tae Sung;Kwak, Gun Pyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • This paper proposes a novel $H{\infty}$ T-S Fuzzy controller with a weighted integral action for Interior Permanent Magnet Synchronous Motor(IPMSM) which have nonlinear dynamics. The $H{\infty}$ T-S Fuzzy controller is used for the robustness of nonlinear systems and the weighted integral action is used for the tracking problem and the improvement of control performance. A T-S Fuzzy controller is designed by combining the local controllers with the overall stability, and LMI(Linear Matrix Inequality)is used to determine the gains of linear controllers. The tracking problem of IPMSM is changed into regulator problem by introducing the integral action and the weighting factor gives flexibility to a $H{\infty}$ fuzzy controller.

Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control (인공위성 자세제어를 위한 H-infinity 제어기 설계 알고리즘 비교 연구)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.57-69
    • /
    • 2016
  • There are three kinds of algorithms(2-ARE, mu-synthesis, LMI) for controller design using closed-loop shaping method. This paper provides the summary of background theory of three algorithms and $H_{\infty}$ controller design results for spacecraft attitude control using the three controller design tools of Matlab$^{TM}$ Toolbox for comparison. As a result, it reveals that LMI design method is more reliable as well as easier than others for spacecraft attitude control design. Comparison results are as follow: 2-ARE method and LMI method provide almost same results in robust stability, robust performance and control authority level. But 2-ARE method is more sensitive than LMI method with respect to proper design of weighting functions: 2-ARE method is more difficult than LMI method in weighting function design. The design result of mu-synthesis method shows worse performance and requires bigger control authority than others.

Automatic Blood Pressure Control Using PI Controller with $H_{\infty}$ Loop-Shaping

  • Han, Jeong-Yup;Lee, Sang-Kyung;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.326-329
    • /
    • 2004
  • In this paper, we show a new form of blood pressure controller combined PI control with $H_{\infty}$ loop-shaping. Hypertensive patients or post-operative patients need to maintain normally blood pressure. Exact regulation of blood pressure is needed for maintaining variable blood pressure of preventing complications. The regulation of blood pressure is achieved by injecting drugs, and usually sodium nitroprusside is used as those kinds of drugs. It is necessary to control the infusion rate sodium-nitroprusside carefully to achieve the desired blood pressure. It has been known that regulation of blood pressure by automatic controller is more effective than regulation of blood pressure by human operators. The control of blood pressure has many constraints and uncertainties. Most of biological system has the time-varying variables and the side effects such as increased risk of sepsis and organ failure. To solve such a problem, we design a new robust PI controller using $H_{\infty}$ loop-shaping to decrease noise effects that come out from human body and errors for time delay. The system with designed controller shows more stable control of mean blood pressure and more robust performance for uncertainties. Validation methods for the control performance are confirmed to computer simulations.

  • PDF

Mixed $L_1/H_{\infty}$ Suboptimal Control: A LMI Approach (LMI를 이용한 $L_1/H_{\infty}$ 준최적 제어기법)

  • Chun, K.H.;Noh, D.J.;Seo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1131-1133
    • /
    • 1996
  • In this paper, we consider the mixed $L_1/H_{\infty}$ problems of finding internally stabilizing controllers which minimize the peak-to-peak gain of a certain closed loop transfer function with $H_{\infty}$-norm constraint on other closed loop transfer function(or vise versa). This problem is a useful framework for designing a controller with the norm constraints upon time and frequency domain. We formulate the mixed $L_1/H_{\infty}$ problem as LMI problems by using the reachable set. This paper offers the sufficient condition for the existence of suboptimal state feedback controller, and shows that suboptimal solution can be obtained by solving a finite-dimensional convex optimization and a line search.

  • PDF

Application of H¡? Controller Design Method to a Linear Singularly Perturbed System (H$\infty$ 제어기 설계법의 선형 특이섭동 시스템에의 적용)

  • Yoo, Seog-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.648-657
    • /
    • 1994
  • This paper presents a solution of the H$\infty$ control problem for a linear singularly perturbed system. A sufficient condition for a linear singularly perturbed system to achieve the prescribed disturbance attenuation level is obtained. Based upon this sufficient condition, an H$\infty$ controller design method which involves the solutions of two generalized algebraic Riccati equations(GRE) is developed.

Robust and Non-fragile $H^{\infty}$ Output Feedback Controller Design for Parameter Uncertain Systems with Time Delay (시간지연을 가지는 파라미터 불확실성 시스템에 대한 견실 비약성 $H^{\infty}$출력궤환 제어기 설계)

  • 손준혁;조상현;김기태;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.17-20
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile Η$^{\infty}$ output feedback controller for parameter uncertain systems with time delay. The sufficient condition of controller existence, and the design method of robust and non-fragile Η$^{\infty}$ output feedback controller are presented. The obtained conditions can be represented as parameterized LMIs, and PLMIs feasibility problems involve infinitely many LMIs hence are very hard to solve. Therefore, PLMIs are replaced by a finite set of LMIs using relaxation techniques(separated convexity concepts). This method is potentially conservative but often provide practically exploitable solutions of difficult problems with a reasonable computational effort. The compatibility of resulting controller is illustrated by numerical example.

  • PDF

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.