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Abstract

In this paper, we consider the mixed £, /H, problems of
finding internally stabilizing controllers which minimize the
peak-to-peak gain of a certain closed loop transfer function
with AH_-norm constraint on other closed loop transfer
function(or vise versa). This problem is a useful framework
for designing a controller with the norm constraints upon
" time and frequency domain. We formulate the mixed £,/ H,,
problem as LMI problems by using the reachable set. This
paper offers the sufficient condition for the existence of
suboptimal state feedback controller, and shows that
suboptimal solution can be obtained by solving a finite-
dimensional convex optimization and a line search.

1  Introduction

In many controller design problems, one is to design &
controller to meet certain objectives for a given plant. Inf;
practice, plant has some uncertainties and is affected by
disturbances or noise at either its input or output. Thus one
tries to model such uncertainties and disturbances, and to
design the closed loop system minimizing the effect of them
in some senses.

It is assumed that the disturbances are persistently
bounded signal and formulated L, optimal contro! problem
minimizing the peak-to-peak gain of closed loop system in
{1). The complete solution for this problem was obtained
from L, optimal control theory [2], (3]. And L, optimal
contro} theory deals with time domain specifications, on the
other hand A, control theory mainly treats frequency
domain design specification. In [4], a large class of time
domain design specifications was expressed in terms of linear
constraints and was incorporated into linear program.

In this paper, we consider the problem of designing
stabilizing controllers that minimizing the L, nomm of a
certain closed loop transfer function with maintaining the

H_ norm of other closed loop transfer function under a
prescribed value or vice versa. This problem can arise in
minimizing the peak-to-peak gain of some close loop transfer
function under the known uncertainty of system.
Alternatively, it can be thought as the problem of designing 2
controller that achieves good nominal L, performance as well
as robust stability in the sense of H_, -norm.

It has been shown that the discrete-time mixed /'/H,,
problem can be solved by finite dimensional convex
constrained optimization problem and standard unconstrained
H_problem. Furthermore, the continuous-time mixed
L/ H_ controller can be obtained from discrete-time Euler
approximating system[6]. Since these obtained controllers
may be arbitrarily high order system, we need to reduce the
order. However, instead of minimizing the L;-norm, new
technique that minimizes «-norm by LMI approach, has been
introduced in {7]. These controllers has the same degree as
generalize plant from the properties of LML

In this paper, we propose an alternative approach to
obtain a mixed L,/H,, controller though expressing the
bounds of L,-norm and H_-norm in LMI terms. The main
result of this paper shows that the minimizing state feedback
controller can be obtained by a two-stage procedure entailing
a finite-dimensional convex optimization and a one-
dimensiona! line search.

This paﬁet is organized as follows: In section 2, we
introduce some notations to be used. In section 3, we shows
that the mixed L, / H,, problem can be formulated as a finite-
dimensional optimization problem and one-dimensional line
search, Finally, in section 4, we discuss our main results and
directions of future research.

2  Preliminaries

In this section, we summarize some basic potations and
theorems which are used for deriving our main results in
section 3.
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2.1 Basic Notations
Let 9, be nonnegative real number.

L"(!R,) : The real normed space of measurable function
£(¢). The norm is defined:
. = ess supf()
=,
A(m’) : The space of Lebesgue integrable functions on

R, . The norm is defined:
W, = [ Aot
n
WA, = supltedd, =max2 ), <
2.2 Modified sup-norm and * -norm
We now define modified sup-norm to apply LMI
technique. Given a function 7(f) €/*, we will define the
norm ﬂf(t)ﬂ" = s,lélop{f'(t)f(t)}"z, i.e. the supremum over

time the pointwise euclidian norm of the vector £(f). For an
operator H:L] — L7, we will define the induced norm
M‘_,, ie.

nHHl.t = Iﬁ?,psl “H. u“-.n °

Note that for scalar signals these norms coincide with the
usual |- L and |- I]‘. However, in general case, we have

following relation

1
FHH“I < “H“v.o < m"2||H||‘.

In the following theorem, M,. Jcan be expressed in
terms of R, i.e. the set of all reachable states from the origin
with input norm-bounded by one. The reachable set R is
bounded by an ellipsoid that comes from a LMI as in {7,8).

Theorem 2.1 Suppose H=[A,B,C,0] and A is stable. Then,
WA, = maxlod <inf max lod = A4,

where Q is any symmetric, positive definite matrix such that
for some real number & >0,

AO+0A'+¢Z0+%BB'SO )

As in Theorem 2.1, we define the *-norm as the smallest
upper bound on |, ,, that offers a upper bourid for the 1-

norm of the system. This upper bound comes from
approximating the set of reachable states with norm-bounded
input by ellipsoid[9]. The computing of the *-norm is
equivalent to the minimization of convex function over an
interval of the real line. The function and its subgradient can
be efficiently evaluated by solving Lyapunov equation{7].
Proposition 1 Suppose that H=[A,B,C,0] and A is stable.

Let Q be any solution of (1) and A, =r.

Then, for any 77>0 such that satisfies

A0+0A'+%35'+oc'coso', nar.

This proposition addresses that for any symmetric
positive definite matrix Q which satisfies (1), the invariant
ellipsoid £ = {{15'0"5 < 1} contains the reachable set R
with unit peak input. Furthermore, the invariant ellipsoid £
also contains the reachable set A, . Thus, for a obtained
invariant ellipsoid £ approximating the reachable set R with
unit peak input, we impose a //_-norm constraint on the
invariant ellipsoid E.

2.3 Bounded H, -norm:

Now, we consider a system H=[{4,B,C,D] and the
condition of ﬂHlL <y .We recall the well known Bounded
Real Lemma for continuous-time systems. The following
theorem, which will be used in our main result, can be easily
obtained from bounded real lemma.

Theorem 2.2 Suppose that A is stable. The following
statements are equivalent.
@ M. <7
(b) There exists a symmetric positive definite matrix X
satisfying the following LMI;
AX+XA XB ¢
8'x -d D |<0
c D -4
3 Problem Formulation

In this section, we formulate the mixed £,/ H,, problem
and the cost function. Consider the system shown in Figure 1,
where u and y represent the control inputs and the outputs
available to the controller, respectively. The external
disturbances and regulated outputs are represented by @ and
2y, Zo,

T —y — Z
G f——s Zs
u y

Figure 1: Problem setup

3.1 Cost function J
The mixed £, / H_, problem can be stated as:
For the given generalized plant G, find an internally
stabilizing controller K such that minimizes the cost function

J(T,_,) = HT,',‘“‘ under the /_-norm constraint IT,_,L <y.

To solve this problem, we modify the cost function as
follows:

A= i <.
J, (7',‘.) = HT‘,.‘L subject to IT, ‘,n. <s.
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In this paper, we consider only J, as the cost function.
The formulation using./,, instead of J, gives similar result.
In section 4, we shall state this problem. As we stated in
section 2, *-norm is an upper bound for t-norm. If we
minimize the * -norm, 1-norm also decreases.

3.2 State-feedback controller

Now, we consider the generalized plant G:

(3)

For the simplicity, we assume that C/D,, =0 and
D},D,, = I. The following theorem shows that necessary
and sufficient condition of bounded * -norm.

Theorem 3.1 The following statements are equivalent:
(a) There exits a finite-dimensional LTI controller K
such that {7 | < 5.

(b) There exists a constant gain controller ¥=Kx such
that |7, <4.

Zwli,

@

(c) There exists a scalar o such that following LMI
admits a solution:

(AO+BZ)’+OA'+)"BZ' +aQ B, ) <o

8! -
2 CIO) (4)
6! ( Y/i>0
(oc; v) @

,where Q=Q",Q > 0.
Moreover, if any of these statements hold, then the
7.l <&

controller & = YQ™'x achieves |T,,

3.3 Problem Solution

In this subsection, we analyze the optimal controller for
the cost function J defined as J,. The main resuit shows that
the suboptimal solution can be obtained by solving a finite-
dimensional convex optimization problem and one-
dimensional line search. From Theorem 2.2 and 3.1, we can
obtain following result. Firstly, we define the following LMI
problem as LMIRP(LMI formulation for robust performance
problem).
(AO+82Y+OA' +YB, +aQ B, J <0

&) -
st (C,O) (LMIRP1)
Y/|>0
(oc; v) @
AQ+B,Y + QA +Y'B; B, QC;+Y'D,
B -A 0 <0 (LMIRP2)
C,Q+0D,Y 0 -A

,where Q=0Q',0>0.

Remark: For a given y > 0, LMIRP can be solved by finite-
dimensional ' convex optimization problem and one-
dimensional line search.
Proposition 2 Suppose that the generalized plant G is given
as (3). Then, if there exists a scalar o such that following
LMI admits a solutions, then (a) and (b) are satisfied

(a) There exits a finite-dimensional LTI controller X

such that |7, | <& and I]T,_‘,,ﬂ‘° <y.

20
(b) There exists a constant gain controller #=Kx such
that [T, s s and |1, ] <7.
Furthermore, the controller & = YQ™'x achieves
Ve s and Jr, ) <.

Proposition 2 states that controllers can be obtained by
solving a finite-dimensional convex optimization problem
and a one-dimensional line-search

4 Conclusions

In this paper, we considered the mixed £,/ H4, problems
of finding internally stabilizing controllers which minimize
the peak-to-peak gain(or //_-norm) of a certain closed loop
transfer function with H,-norm(or peak-to-peak gain)
constraint on other closed loop transfer function. This
problem is a useful framework for designing a controller with
the norm constraints upon time and frequency domain,

Recently, many solutions for this problem are introduced.
However, to obtain a suboptimal solutions, the degrees of
controllers can be arbitrarily large. To avoid this high order
property, LMI approach was introduced in [7]. We
formulated the mixed L,/ H, problem as LMI problems by
using the reachable set. The main result of this paper offers
the sufficient condition for existence of suboptimal state
feedback controller, and shows that suboptimal solution can
be obtained by
optimization and a line search. Research is being carried out
toward extending these results to the output feedback case.

solving a finite-dimensional convex

References
[1] Vidyasaga, “Optimal Rejection of B
AC. 31, pp. 527-535, Jun, 1986

[2] Dahleh, 1. B: Pearson, */' -Optimal Comp for Continuous-Time
Systems”, IEEE Trans. AC. 32, pp. 889-895, Oct. 1987

[3] Dahleh, J. B. Pearson, “/ ! Optimal Feedback Controiler for MIMO
Discrete-Time Systems”, IEEE Trans. AC. 32, pp. 314-322, Apr. 1987

{4] Elia, M. A. Dahleh, J. Diaz-Bobilo, “Controller Design via Infinite-
Di ional Linear Prog ing", ACC, pp. 2165-2169, Jun. 1993

[51 Blanchini, M. Sznaier, “Rational £ sub ptimal Comp for
Continuous-Time Systems”, ACC, pp. 635-639, Jun. 1993

[6] Sznaier, F. Blanchini, “Mixed L. / H. Suboptimal Controllers for
Continuous-Time Systems”, ACC, pp. 1613-1618, Jun. 1994

{7] K. Napal, J. Abedor and K. Polla, “An LMI Approach to Peak-to-peak Gain
Minimization, Filtering and Control™, ACC, pp. 742-746, 1994

{8} S.Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, SIAM, 1994

{9] P. Gahinet and P. Apkarian, “A Lincar Matrix Inequality Approach to H.,
Control”, Int. J. of Robust and Nonlinear Control, Vol.4, 421-448, 1994

ded Disturb

", IEEE Trans.

- 1133 -



